value at risk model Archives - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Digital Transformation Calls for Wider Security Transformation!

Digital Transformation Calls for Wider Security Transformation!

Going Digital is the buzzword – conventional businesses are getting transformed, thanks to digital bandwagon! Each day, it’s developing some new ways to engage clients, associate with partners and strike better operational efficiencies. Today’s business houses are using digital power to enhance revenue and reduce cost, and we can’t agree more.

Digital business is generally the implementation of digital technologies to support business models through user behavior evolution and considerable regulation support. For an instance, let’s look at Uber:

  • New Technology – Transportation technology platform
  • Business Model – Driver-partners and riders model
  • User Behavior Norm – Acceptance of non-traditional transportation method
  • Regulation Support – Cities and countries modify regulation to strengthen models

Today, cyber security and technology risk-management are treasure keys to future business growth and prosperity – security industry has evolved a lot over the years in terms of risk mitigation measures. Digital transformation has made way for security transformation, and in this regard, below we’ve whittled down the elements used for security transformation:

Digital Technologies – Smart watches, smart cars, health bands, voice assistants and smart home devices are some of the latest digital technologies clogging the present industry. These devices are to be supported by robust application platforms using AI, Machine Learning and Big Data.

Business Models – Risk management techniques are perfect for determining information risks emanating from business processes. In digital businesses, dynamic processes are common and evolving. Traditional risk models can’t handle them.

Evolving User Behaviors – Consumers are king in the digital world. The users are empowered with tools to make their own choices. On the contrary, traditional security processes used to treat users as weak links.

Regulation Support – To manage risk, security and privacy, regulations around the globe are changing and control standards are being updated or modified. For effective adaptability with the relevant changes, compliance assurance and sustenance need to be modified.

2

A Few Fundamental Design Principles for Control Framework for Security Transformation

Business Accelerator – Only security is not just good enough for smooth digital transformation. Security has to take the role of an accelerator since the fundamental premise of going digital is to be fast in the market and enhance customer satisfaction.

Example – Biometric Authentic – it improves user speed and experience.

Technology Changes and Agile Design – The stream of technology is evolving – AI, ML, Blockchain, Virtual Reality, Internet of Things, etc. – every domain of technology is undergoing a robust transformation. Therefore, security controls have to be adaptable and agile in design.

Customer-oriented – Known to all, customers are the most important element in digital business. In the new digitized world, users are the ones who decide. Two-decade ago rule, ‘deny all, permit some’ is now changed into ‘permit all, deny some’ rule – and we are truly excited!

Automate and Digitize – It’s time security goes digital – automation is the key.

In the near future, risk management through security transformation is going to be the utmost priority for all risk managers –if you are interested in Market Risk Analytics, drop by DexLab Analytics. They are the best in town for recognized and reputable Value at Risk Model online training. For more, check out their official website.

 

The blog has been sourced from www.forbes.com/sites/forbestechcouncil/2018/09/27/the-digital-transformation-demands-large-scale-security-transformation/#64df7fc41892

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Risk Analytics: How to Frame Smarter Insights with Organizational Data

Companies are launching cloud-based data analytics solutions with an aim to aid banks improve and manage their risk efficiently and streamline other activities in the most cost-effective ways.

Risk Analytics: How to Frame Smarter Insights with Organizational Data

Risk analysis is a major constituent of banking circle. Analytics-intensive operations are being run in almost all banking institutions, including cyber-security, online data theft and third-party management. The concept of risk is not something new. For years, it has been the key responsibility of C-suite professionals, but the extravagant amount of awareness and recognition associated with risk analytics was missing then. Also, the regulatory and economic landscape of the world is changing and becoming more intense – hence, risks need to be managed adequately. The executive teams should make risk analytics their topmost agenda for better organization functioning.

Why risk analytics?

The first and foremost reason to incorporate risk analytics is to measure, quantify and forecast risk with amped certainty. Analytics help in developing a baseline for risk assessment in an organization by working on several dimensions of risk and pulling them in a single unified system for better results.

What are the potential benefits of risk analytics?

  • Risk analytics help in turning guesswork into meaningful insights by using a number of tools and techniques to draw perspectives, determine calculable scenarios and predict likely-to-happen events.

  • An organization stay exposed to risk. Why? Because of a pool of structured and unstructured data, including social media, blogs, websites available on both internal and external platforms. With risk analytics, you can integrate all these data into a single perspective offering actionable insights.

  • Risk is a largely encompassing concept, spilling across several domains of organizational structure that at times it can really be hard to know how to manage risk and pull out meaningful insights. In such situations, risk analytics play a pivotal role in ensuring organizations develop foresight for potential risks and provide answers to difficult questions so as to create a pathway for action.

Things to do now:

Ask the right questions

Analytics means research. It ushers you to ask questions and dig deeper into risk-related stuffs. But framing random questions don’t help. To have a real impact, conjure up a handful of questions that hits the real topic.

Understand interdependencies

Risk pierces into organizational boundaries. And analytics work by offering cross-enterprise insights, by inferring conclusions throughout the business. That makes it effective to tackle far-reaching issues.

Streamline productive programs

Analytics help decision-makers introspect and evaluate risks, as well as rewards – related to operational and strategic decisions. Adding insights into pre-determined actions to determine and curb risks yield sustainable value for the program, which in the end improves overall program performance.

Let’s Take Your Data Dreams to the Next Level

In the end, risk analytics seem to be quite a daunting subject to take up, but the truth is, some organizations are really doing well in managing their risks. If you are frustrated somehow and this whole concept of risk analytics baffles you more, take up SAS risk management certification. DexLab Analytics, a premier market risk training institute offers incredible market risk courses for data-hungry aspirants.

 

The article has been sourced from – https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Deloitte-Analytics/dttl-analytics-us-da-oriskanalytics3minguide.pdf

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Now Navigate Through Risks with Better Data, Improved Analytics

The treasure trove of data can devise new improved ways to mitigate risks.

 
Now Navigate Through Risks with Better Data, Improved Analytics
 

How to reduce the range of risks and better grasp the reins of the business? Though data is being gathered, and pushed through the highly advanced risk analytics tools, how do the risk insurers utilize these insights to boost improved decision-making procedures that affect the business future and potential losses?

Continue reading “Now Navigate Through Risks with Better Data, Improved Analytics”

Incredible Future Possibilities of Market Risk Analytics

Global risks are burgeoning; companies of all sizes are seeking the perks of risk analytics and management. Smart companies are realizing the change is coming from people as well as recent technological breakthroughs, including Big Data and AI. And CEOs are improvising their risk teams, and transforming them into perceptive strategic advisors to address budding dangerous threats like cybercrime.

 
Incredible Future Possibilities of Market Risk Analytics
 

Modern risk analysts have accurate knowledge about risk, artificial intelligence and cyber security – so, it’s time they get an opportunity to show a greater presence in the stoic boardrooms as strategic advisors. AI, the cutting-edge risk analytics tool surfaced out to enhance the inexorable march of big data. As such, their importance in the organization in assessing risk has greatly increased.

Continue reading “Incredible Future Possibilities of Market Risk Analytics”

The Future of Risk Management: Triggering a Technology Dividend

The Future of Risk Management: Triggering a Technology Dividend

Many factors are constantly shaping and reshaping the structure of risk management today – including global geopolitical inconsistency, macroeconomic headwinds and increasing number of cyber activities – which is extensively damaging and recurring. All this is leading to elevated risk perceptions.

The nature of risks has changed over the years too, as well as the manner of addressing them. Today, to mitigate risk issues, technology plays a crucial role. Headwinds like global and Asian accelerating debt levels, lower projection of productivity growth, increasing levels of policy uncertainty and constant increase of US interest have created a lot of prominent macroeconomic challenges, especially in export-oriented Asian economies. Topping that, budding risks from technological advancements are on the rise, exposing industries to newer challenges like cybersecurity and data fraud.

Explaining the Everlasting Bond between Data and Risk Analytics – @Dexlabanalytics.

As a result, the regulatory scenario of the world is also changing, especially after the global financial crisis. With a wide array of regulations introduced, the issue of risk management has started getting the desired prominence. These increasing regulations have compelled banks to accelerate their compliance activities, while giving increasing pressure on risk-management policymaking. The risk management teams now need to be constantly on a lookout for newer uncertainties – the key to address this concern remains productivity gains, but for that technology needs to be employed to the vast extent.

Cyber Value-at-Risk Model: Quantifying the Value-at-Risk – @Dexlabanalytics.

Hitting a technology dividend

Advanced data analytics, contemporary data and NLP coupled with process digitization offers new robust opportunities for effective market risk management. The technological opportunities can be realized throughout various key functions and levels, but it is the duty of the risk professionals to chalk out a more affordable and fruitful approach to address risk-related issues.

A New Course Alert! DexLab Analytics Launches Market Risk Analytics and Modelling – @Dexlabanalytics.

Check out these 3 principal levers to nab potential opportunities:

Data – Data is the new powerful combat weapon. Financial institutions consist of huge piles of data, where internal and external sources of data continuously pour in at an accelerating rate.  Data, in every form – including transaction, social media, and other sources helps discover real-time customer insights and generate dividends thereafter.

Analytics – Nowadays, machine learning, NLP, advanced analytics and self-learning algorithms are widely available and at achievable prices. The best example to show how advanced analytics is boosting risk management is improving debt collection.

As per conventional debt repayment collection procedure, a lot many calls were asked to make, out of which very few turned out to be successful. But now, with advanced analytics, a set of high-end predictive models are developed to fire up decision-making process. After this, an improved insight about customers can be curated, which can further be developed with better prediction quality.

Processes – With digitization, one gets the opportunity to automate and design risk-monitoring processes to mitigate emerging risks. Nowadays, several financial institutions are implementing machine learning and transaction data to automate monitoring of conduct risk.

Subject to the extent of digitization, the change in factors for risk organization is proposed – in the beginning of digitization, one expects 15-20 percent efficiency gains, while a 60-70% improvement is to be expected in case of a fully digitized risk function, which is quite a show!

Market Risk Analytics: What It is All About – @Dexlabanalytics.

Do you want to know more about market risk modelling techniques? Drop by DexLab Analytics; being a one-stop-destination for Market Risk Modelling using SAS, it boasts of superior training and well-researched study materials.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Banking Business and Banking Instruments-3: Mortgages

How to Leverage AI Strategy in Business?
 

In this blog we discuss the final banking instrument- Mortgages, for which models are developed extensively. A mortgage is a debt instrument, secured by the collateral of specified real estate property that the borrower is obliged to pay back with a pre-determined set of payments. Mortgages are used by individuals and businesses to make large real estate purchases without paying the entire value of the purchase upfront.

 

2

 

Mortgages are mainly of two types: (a) Traditional Mortgages (b) Adjusted Rate Mortgages.

 

Traditional Mortgage is a fixed rate mortgage, where the borrower pays the same a fixed rate of interest for the life of the mortgage. The monthly principal and the interest payments never change from the first payment to the last. Most fixed rate mortgages have a 15-30 year term. If the market interest rate rises, the borrowers’ payment does not change. If the market interest rate drops significantly, the borrower may secure the lower rate by re-financing the mortgage.

Continue reading “Banking Business and Banking Instruments-3: Mortgages”

Call us to know more