Spark Hadoop Developer Certification Archives - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

The ABC Basics of Apache Spark

The ABC Basics of Apache Spark

Amazon, Yahoo and eBay has embraced Apache Spark. It’s a technology worth taking a note of. A bulk of organizations prefers running Spark on clusters along with thousands of nodes. Till date, the biggest known cluster consists of more than 8000 nodes.

Introducing Apache Spark

Spark is basically an Apache project tagged as ‘lightning fast cluster computing’. It features a robust open-source community and is the most popular Apache project right now.

Spark is equipped with a faster and better data processing platform. It runs programs faster in memory as well as on disk as compared to Hadoop. Furthermore, Spark lets users write code as quickly as possible – after all, you’ve more than 80 high-level operators for coding!

2

Key elements of Spark are:

  • It offers APIs in Java, Scala and Python in support with other languages
  • Seamlessly integrates with Hadoop ecosystem and other data sources
  • It runs on clusters controlled by Apache Mesos and Hadoop YARN

Spark core

Ideal for wide-scale parallel and distributed data processing, Spark Core is responsible for:

  • Communicating with storage systems
  • Memory management and fault recovery
  • Arranging, assigning and monitoring jobs present in a cluster

The nuanced concept of RDD (Resilient Distributed Dataset) was first initiated by Spark. An RDD is an unyielding, fault-tolerant versatile collection of objects that are easily operational in parallel. It can include any kind of object, and supports mainly two kinds of operations:

  • Transformations
  • Actions

Spark SQL

A major Spark component, SparkSQL queries data either through SQL or through Hive Query Language. It first came into operations as an Apache Hive port to run on top of Spark, replacing MapReduce, but now it’s being integrated with Spark Stack. Along with providing support to numerous data sources, it also fabricates several SQL queries with code transformations, which makes it a very strong and widely-recognized tool.

Spark Streaming:

Ideal for real time processing of streaming data – Spark Streaming receives input data streams, which is then divided into batches only to be processed by Spark engine to unleash final stream of results, all in batches.

Look at the picture below:

The Spark Streaming API resembles Spark Core – as a result, it becomes easier for programmers to tackle for batch and streaming data, effortlessly.

MLib

MLib is a versatile machine learning library that comprises of numerous fetching algorithms that are designed to scale out on a cluster for regression, classification, clustering, collaborative filtering and more. In fact, some of these algorithms specialize in streaming data, such as linear regression using ordinary least squares or k-means clustering.

GraphX

An exhaustive library for fudging graphs and performing graph-parallel operations, GraphX is the most potent tool for ETL and other graphic computations.

Want to learn more on Apache Spark? Spark Training Course in Gurgaon fits the bill. No wonder, Spark simplifies the intensive job of processing high levels of real-time or archived data effortlessly integrating associated advanced capabilities, such as machine learning – hence Apache Spark Certification Training can help you process data faster and efficiently.

 
The blog has been sourced fromwww.toptal.com/spark/introduction-to-apache-spark
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Fintech Companies: How They Are Revolutionizing the Banking Industry?

Fintech Companies: How They Are Revolutionizing the Banking Industry?

The world of technology is expanding rapidly. And so is the finance. Fintech is the new buzzword; and its extensive use of cutting edge algorithms, big data solutions and AI is transforming the traditional banking sector.

Nevertheless, there exist many obstacles, which fintech companies need to deal with before creating an entirely complementary system that covers the gap between both.

Ezbob and LaaS

Innovation takes time to settle, but with little effort, banks can strike gold than ever. New transparency laws and digital standards are being introduced and if banks are quicker in embracing this new technology, they can ring off success very easily. Not every fintech is determined to cause discomfort to banks, in fact a lot of fintech startups offer incredible services to attract new customers.

One of them is ezbob, a robust platform in partnership with multiple major banking institutions that streamlines an old process with cutting edge technology. This platform develops a smooth, automatic lending process for bank’s customers by sorting data accumulated from more than 25 sources in real time. Currently, it’s leading Lending-as-a-Service (LaaS) industry, which is deemed to be the future of banking sector.

LaaS is one of the key transforming agents that have brought in a new trend in the banking sector. It reflects how everyone can benefit, including customers and partners, when efficiency is improved. Real time decisions are crucial; it helps bankers turn attention to the bigger picture, while technology takes care of other factors.

2

The Art of Regulations

Conversely, fintech startups should be wary of regulations. Notwithstanding the fact that technology is fast decentralizing the whole framework and disrupting institutional banking sector, fintech companies should focus on regulation and be patient with all the innovations taking place around. Banks need time to accept the potentials of fintech’s innovation but once they do, they would gain much more from adopting these technologies.

The aftermath of 2008 financial crisis have made it relatively easier for fintech startups to remain compliant and be more accountable. One of the latest regulations passed is about e-invoicing, which require organizations should send digital invoices through a common system. This measure is expected to save billions of dollars on account of businesses and governments, as well.

Some of the other reforms that have been passed recently are mainly PSD2, which has systematized mobile and internet payments, and AMLD, which is an abbreviation of Anti Money Laundering Directive. The later hurts those who don’t want to be accountable for their income, or involved in terrorism activities.

Conclusion

As closing thoughts, we all can see the financial sector has been the largest consumers of big data technology. According to Gartner, 64% of financial service companies have used big data in 2013. And the figures are still rising.

To be the unicorn among the horses, it’s high time to imbibe big data hadoop skills. This new-age skill is going to take you a long way, provided you get certified from a reputable institute. In Delhi-Gurgaon region, we’ve DexLab Analytics. It offers state-of-the-art hadoop training in Gurgaon. For more information, drop by their site now.

DexLab Analytics Presents #BigDataIngestion

A Special Alert: DexLab Analytics is offering #SummerSpecial 10% off on in-demand courses of big data hadoop, data science, machine learning and business analytics. Enroll now for #BigDataIngstion: the new on-going admission drive!

 
The blog has been sourced from – http://dataconomy.com/2017/10/rise-fintechpreneur-matters
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more