Spark Core training in Delhi Archives - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Top Things to Know About Scala Programming Language

Top Things to Know About Scala Programming Language

Scalable Language, Scala is a general-purpose programming language, both object-oriented and highly functional programming language. It is easy to learn, simple and aids programmers in writing codes in a simple, sophisticated and type-safe manner. It also enables developers and programmers in being more productive.

Even though Scala is a relatively new language, it has garnered enough users and has wide community support – because it’s touted as the most user-friendly language.

About Scala and Its Features

Scala is a completely object-oriented programming language

In Scala, everything is treated as an object. Even, the operations you conduct are termed as a method call. Scala lets you add new operations to already existing classes – thanks to the implicit classes.

One of the best things about Scala is that it makes it effortlessly easy to interact with Java code. You can easily write a Java code inside Scala class – interesting, isn’t it? The Scala makes way for hi-tech component architectures with the help of classes and traits.


Scala is a functional language

No wonder, Scala has implemented top-notch functional programming concepts – in case you don’t know, in functional programming, each and every computation is regarded as a mathematical function. Following are the characteristics of functional programming:

  • Simplicity
  • Power and flexibility
  • Suitable for parallel processing

Not interpreted, Scala is a compiler-based language

As Scala is a compiler based language, its execution is relatively faster than its tailing competitor, Python. The latter is an interpreted language. The compiler in Scala functions just like a Java compiler. It taps the source code and launches Java byte-code that’s executable across any standard JVM (Java Virtual Machine).

Pre-requisites for Mastering Scala

Scala is a fairly simple programming language and there are minimal prerequisites for learning it. If you possess some basic knowledge of C/C++, you can easily start acing Scala. As it is developed upon Java, the fundamental programming functions of Scala are somewhat similar to Java.

Now, if you happen to know about Java syntax or OOPs concept, it would prove better for you to work in Scala.

Basic Scala Terms to Get Acquainted With


An entity which consists of state and behavior is defined as an Object. Best examples – person, table, car etc.


Described as a template or a blueprint for designing different objects that reflects its behavior and properties, a Class is a widely popular term.


It is reckoned as a behavior of a class, where a class may include one or more methods. For example, a deposit can be reckoned as a method of bank class.


It is defined as any function that ends within the environment in which it’s defined. A closure return value is determined based on the value of one or more variables declared outside the closure.


These are used to determine object types by mentioning the signature of the supported methods. It is similar to a Java interface.

Things to Remember About Scala

  • Scala is case sensitive
  • When saving a Scala program, use “.scala”
  • Scala execution process begins from main() methods
  • Never can an identifier name start with numbers. For an instance, the variable name “789salary” is not valid.

Now, if you are interested in understanding the intricacies and subtle nuances of Apache Spark in detail, you have to enroll for Scala certification Training Gurgaon. Such intensive Scala training programs not only help you master the programming language but ensure secure placement assistance. For more information, reach us at DexLab Analytics, a premier Scala Training Institute in Gurgaon.

The blog has been sourced from ―

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Success Story of Big Data Tooling

The Success Story of Big Data Tooling

The world of hadoop data tooling is flourishing. It’s being said, Hadoop is shifting from possible data warehousing to an accomplished big data analytics set-up.

Back in the day, right after Hadoop at Yahoo was first invented, proponents of big data asserted its potential for substituting enterprise data warehouses, framed on business intelligence.

Open source Hadoop data tooling became a preferred choice more as an alternative to those insanely expensive existing systems – as a result, over time, the focus shifted to expanding existing data warehouses and more. Intricate Hadoop applications today are known as data lakes and of late big data tooling is found swelling beyond meager data warehouses.

“We are seeing increasing capabilities on the Hadoop and open source side to take over more and more of the corporation’s data and workloads, including BI,” said Mike Matchett, an analyst and founder of the Small World Big Data consultancy.


Self Service and Big Data

In August, Cloudera launched Workload XM management services designed exclusively for cloud-based analytics. Alternatively, the company built a hybrid Cloudera Data Warehouse and a Cloudera Altus Data Warehouse, capable of running over both Microsoft Azure clouds and AWS.

The main objective of management services is to bring forth some visibility into various data workloads. Workload XM is constructed to aid administrators in presenting reliable service-level agreements for self-service analytics applications – says Anupam Singh, GM of Analytics at Cloudera, Palo Alto, Calif.

Importantly, Singh also mentioned that the cloud warehouse offers encryption for data both at still and in motion, and provides a better view into the trajectory of data sets in analytics workloads. Such potentials have gained momentum and recognition as well as GDPR and other programs.

However, all these discussions boil down to one point, which is how to increase the use of big data analytics. “Customers don’t look at buzzwords like Hadoop and cloud. But they do want more business units to access the data,” he added.

Data on the Wheels

Hadoop player, Hortonworks is a Cloud aficionado. In June, the company broadened its Google Cloud existence with Google Cloud Storage support. Enhancing real-time data analytics and management is a priority.

Meanwhile, in August, Hortonworks churned out Streams Messaging Manager (SMM) with an objective of handling data streaming and provide administrators comprehensive views into Kafka messaging clusters. They have increasingly become popular amongst big data pipelines.

These management tools are crucial for moving Hadoop-inspired big data analytics into production capacities, where in data warehouses fails performing – thus, recommendation engines and fraud detection appears to be a saving grace!

Meanwhile, Kafka-related capabilities in SMM are going on getting advanced and with recently released Hortonworks DataFlow 3.2, the performance for data streaming amplified.

R Adaptability

Similar to its competitors, MapR has bolstered its capabilities beyond its original scope of being used as a mere data warehouse replacement. Early this year, the organizers released a new version of its MapR Data Platform equipped with better streaming data analytics and new item data services that would easily work on cloud as well as premises.

As final thoughts, the horizon of Hadoop is expanding, while data tooling keeps modifying. However, today, unlike before, Hadoop is not only the sole choice for doing data analytics – the choice includes Apache Spark and Machine Learning. All being extremely superior and effective when put to use.

If you are looking for Apache Spark Certification, drop by DexLab Analytics. Their Apache Spark Training program is extremely well-crafted and in sync with industry demands. For more, visit the site.


The article has been sourced from —


Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

A Comprehensive Article on Apache Spark: the Leading Big Data Analytics Platform

A Comprehensive Article on Apache Spark: the Leading Big Data Analytics Platform

Speedy, flexible and user-friendly, Apache Spark is one of the main distributed processing frameworks for big data in the world. This technology was developed by a team of researchers at U.C. Berkeley in 2009, with the aim to speed up processing in Hadoop systems. Spark provides bindings to programming languages, like Java, Scala, Python and R and is a leading platform that supports SQL, machine learning, stream and graph processing. It is extensively used by tech giants, like Apple, Microsoft and IBM, telecommunications industry and games organizations.

Databricks, a firm where the founding members of Apache Spark are now working, provides Databricks Unified Analytics Platform. It is a service that includes Apache Spark clusters, streaming and web-based notebook development. To operate in a standalone cluster mode, one needs Apache Spark framework and JVM on each machine in a cluster. To reap the advantages of a resource management system, running on Hadoop YARN is the general choice. Amazon EMR and Google Cloud Dataproc are fully-managed cloud services for running Apache Spark.


Working of Apache Spark:

Apache Spark has the power to process data from a variety of data storehouses, such as Hadoop Distributed File System (HDFS) and NoSQL databases. It is a platform that enhances the functioning of big data analytics applications through in-memory processing. It is also equipped to carry out regular disk-based processing in case of large data sets that are unable to fit into system memory.

Spark Core:

Apache Spark API (Application Programming Interface) is more developer-friendly compared to MapReduce, which is the software framework used by earlier versions of Hadoop. Apache Spark API hides all the complicated processing steps from developers, like reducing 50 lines of MapReduce code for counting words in a file to only a few lines of code in Apache Spark. Bindings to well-liked programming languages, like R and Java, make Apache Spark accessible to a wide range of users, including application developers and data analysts.

Spark RDD:

Resilient Distributed Dataset is a programming concept that encompasses an immutable collection of objects for distribution across a computing cluster. For fast processing, RDD operations are split across a computing cluster and executed in a parallel process. A driver core process divides a Spark application into jobs and distributes the work among different executor processes. The Spark Core API is constructed based on RDD concept, which supports functions like merging, filtering and aggregating data sets. RDDs can be developed from SQL databases, NoSQL stores and text files.

Apart from Spark Core engine, Apache Spark API includes libraries that are applied in data analytics. These libraries are:

  • Spark SQL:

Spark SQL is the most commonly used interface for developing applications. The data frame approach in Spark SQL, similar to R and Python, is used for processing structured and semi-structured data; while SQL2003-complaint interface is for querying data. It supports reading from and writing to other data stores, like JSON, HDFS, Apache Hive, etc. Spark’s query optimizer, Catalyst, inspects data and queries and then produces a query plan that performs calculations across the cluster.

  • Spark MLlib:

Apache Spark has libraries that can be utilized for applying machine learning techniques and statistical operation to data. Spark MLlib allows easy feature extractions, selections and conversions on structured datasets; it includes distributed applications of clustering and classification algorithms, such as k-means clustering and random forests.  

  • Spark GraphX:

This is a distributed graph processing framework that is based on RRDs; RRD being immutable makes GraphX inappropriate for graphs that need to be updated, although it supports graph operations on data frames. It offers two types of APIs, Pregel abstraction and a MapReduce style API, which help execute parallel algorithms.

  • Spark Streaming:

Spark streaming was added to Apache Spark to help real-time processing and perform streaming analytics. It breaks down streams of data into mini-batches and performs RDD transformations on them. This design facilitates the set of codes written for batch analytics to be used in stream analytics.

Future of Apache Spark:

The pipeline structure of MLlib allows constructing classifiers with a few lines of code and applying Tensorflow graphs and Keras models on data. The Apache Spark team is working to improve streaming performance and facilitate deep learning pipelines.

For knowledge on how to create data pipelines and cutting edge machine learning models, join Apache Spark programming training in Gurgaon at Dexlab Analytics. Our experienced consultants ensure that you receive the best apache spark certification training.  


Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Call us to know more