online certificate courses in risk management Archives - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Digital Transformation Calls for Wider Security Transformation!

Digital Transformation Calls for Wider Security Transformation!

Going Digital is the buzzword – conventional businesses are getting transformed, thanks to digital bandwagon! Each day, it’s developing some new ways to engage clients, associate with partners and strike better operational efficiencies. Today’s business houses are using digital power to enhance revenue and reduce cost, and we can’t agree more.

Digital business is generally the implementation of digital technologies to support business models through user behavior evolution and considerable regulation support. For an instance, let’s look at Uber:

  • New Technology – Transportation technology platform
  • Business Model – Driver-partners and riders model
  • User Behavior Norm – Acceptance of non-traditional transportation method
  • Regulation Support – Cities and countries modify regulation to strengthen models

Today, cyber security and technology risk-management are treasure keys to future business growth and prosperity – security industry has evolved a lot over the years in terms of risk mitigation measures. Digital transformation has made way for security transformation, and in this regard, below we’ve whittled down the elements used for security transformation:

Digital Technologies – Smart watches, smart cars, health bands, voice assistants and smart home devices are some of the latest digital technologies clogging the present industry. These devices are to be supported by robust application platforms using AI, Machine Learning and Big Data.

Business Models – Risk management techniques are perfect for determining information risks emanating from business processes. In digital businesses, dynamic processes are common and evolving. Traditional risk models can’t handle them.

Evolving User Behaviors – Consumers are king in the digital world. The users are empowered with tools to make their own choices. On the contrary, traditional security processes used to treat users as weak links.

Regulation Support – To manage risk, security and privacy, regulations around the globe are changing and control standards are being updated or modified. For effective adaptability with the relevant changes, compliance assurance and sustenance need to be modified.

2

A Few Fundamental Design Principles for Control Framework for Security Transformation

Business Accelerator – Only security is not just good enough for smooth digital transformation. Security has to take the role of an accelerator since the fundamental premise of going digital is to be fast in the market and enhance customer satisfaction.

Example – Biometric Authentic – it improves user speed and experience.

Technology Changes and Agile Design – The stream of technology is evolving – AI, ML, Blockchain, Virtual Reality, Internet of Things, etc. – every domain of technology is undergoing a robust transformation. Therefore, security controls have to be adaptable and agile in design.

Customer-oriented – Known to all, customers are the most important element in digital business. In the new digitized world, users are the ones who decide. Two-decade ago rule, ‘deny all, permit some’ is now changed into ‘permit all, deny some’ rule – and we are truly excited!

Automate and Digitize – It’s time security goes digital – automation is the key.

In the near future, risk management through security transformation is going to be the utmost priority for all risk managers –if you are interested in Market Risk Analytics, drop by DexLab Analytics. They are the best in town for recognized and reputable Value at Risk Model online training. For more, check out their official website.

 

The blog has been sourced from www.forbes.com/sites/forbestechcouncil/2018/09/27/the-digital-transformation-demands-large-scale-security-transformation/#64df7fc41892

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Risk Analytics: How to Frame Smarter Insights with Organizational Data

Companies are launching cloud-based data analytics solutions with an aim to aid banks improve and manage their risk efficiently and streamline other activities in the most cost-effective ways.

Risk Analytics: How to Frame Smarter Insights with Organizational Data

Risk analysis is a major constituent of banking circle. Analytics-intensive operations are being run in almost all banking institutions, including cyber-security, online data theft and third-party management. The concept of risk is not something new. For years, it has been the key responsibility of C-suite professionals, but the extravagant amount of awareness and recognition associated with risk analytics was missing then. Also, the regulatory and economic landscape of the world is changing and becoming more intense – hence, risks need to be managed adequately. The executive teams should make risk analytics their topmost agenda for better organization functioning.

Why risk analytics?

The first and foremost reason to incorporate risk analytics is to measure, quantify and forecast risk with amped certainty. Analytics help in developing a baseline for risk assessment in an organization by working on several dimensions of risk and pulling them in a single unified system for better results.

What are the potential benefits of risk analytics?

  • Risk analytics help in turning guesswork into meaningful insights by using a number of tools and techniques to draw perspectives, determine calculable scenarios and predict likely-to-happen events.

  • An organization stay exposed to risk. Why? Because of a pool of structured and unstructured data, including social media, blogs, websites available on both internal and external platforms. With risk analytics, you can integrate all these data into a single perspective offering actionable insights.

  • Risk is a largely encompassing concept, spilling across several domains of organizational structure that at times it can really be hard to know how to manage risk and pull out meaningful insights. In such situations, risk analytics play a pivotal role in ensuring organizations develop foresight for potential risks and provide answers to difficult questions so as to create a pathway for action.

Things to do now:

Ask the right questions

Analytics means research. It ushers you to ask questions and dig deeper into risk-related stuffs. But framing random questions don’t help. To have a real impact, conjure up a handful of questions that hits the real topic.

Understand interdependencies

Risk pierces into organizational boundaries. And analytics work by offering cross-enterprise insights, by inferring conclusions throughout the business. That makes it effective to tackle far-reaching issues.

Streamline productive programs

Analytics help decision-makers introspect and evaluate risks, as well as rewards – related to operational and strategic decisions. Adding insights into pre-determined actions to determine and curb risks yield sustainable value for the program, which in the end improves overall program performance.

Let’s Take Your Data Dreams to the Next Level

In the end, risk analytics seem to be quite a daunting subject to take up, but the truth is, some organizations are really doing well in managing their risks. If you are frustrated somehow and this whole concept of risk analytics baffles you more, take up SAS risk management certification. DexLab Analytics, a premier market risk training institute offers incredible market risk courses for data-hungry aspirants.

 

The article has been sourced from – https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Deloitte-Analytics/dttl-analytics-us-da-oriskanalytics3minguide.pdf

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Incredible Future Possibilities of Market Risk Analytics

Global risks are burgeoning; companies of all sizes are seeking the perks of risk analytics and management. Smart companies are realizing the change is coming from people as well as recent technological breakthroughs, including Big Data and AI. And CEOs are improvising their risk teams, and transforming them into perceptive strategic advisors to address budding dangerous threats like cybercrime.

 
Incredible Future Possibilities of Market Risk Analytics
 

Modern risk analysts have accurate knowledge about risk, artificial intelligence and cyber security – so, it’s time they get an opportunity to show a greater presence in the stoic boardrooms as strategic advisors. AI, the cutting-edge risk analytics tool surfaced out to enhance the inexorable march of big data. As such, their importance in the organization in assessing risk has greatly increased.

Continue reading “Incredible Future Possibilities of Market Risk Analytics”

Market Risk Management 101: Types of Market Risks and How to Manage Them

Market Risk Management 101: Types of Market Risks and How to Manage Them

Last year, Britain opted to leave the European Union – and that created spiking fluctuation and acute market uncertainty across the globe.

Most of the investors out there know investment involves risks and rewards, just like head and tail in a coin and so do the analysts. Higher the risk, better are the chances to gain potential rewards. As a result, it is critical for both an investor and analyst to understand the true nature of market risks that influences the market conditions and controls the shooting volatility and the ways to manage those risks.

Data Science Machine Learning Certification

Common Market Risks

Relevant market risks depend largely on the nature of investment as well as geographic boundaries. Some of the key market risks are as follows:

  • Interest Rate Risk – It is the risk of a decrease in the value of a security owing to changes in interest rates. The rate of change of interest rates is inversely proportional to bonds – based on a rationale that a bond is the future security of a healthy stream of payments – hence as interest rate rises, the price of the issued bonds decreases.

35e54105baeebae9f5da06c73db56683--market-risk-finance-blog

  • Inflation Risk – It relates to the risk that gets affected as the prices of goods and services increases reducing the value of money. This risk results in affecting the value of investments in a negative way. It decreases the purchasing power of money, thereby reducing the value of investment. Sometimes inflation risk is also known as Purchasing Power Risk.
  • Currency Risk – This type of risk arises when your money needs to be converted to a different currency for investment purposes. Here, a small change in exchange rates between the home currency and US dollars can affect your investment return.
  • Liquidity Risk – It refers to the risk of not being able to fulfill certain investment requirements quickly for a price that determines the true value of the asset. Sometimes, one may face difficulties in selling the investment due to a lack of buyers, resulting in a drastic decrease of investment value of that product until someone is ready to pay for it. Foreign investments, over-the-counter markets and small-capitalization stocks are some of the high liquidity risks items.
  • Sociopolitical Risk – The socio-political environ, such as war, terrorist attack, election and corruption affects the market conditions. They affect investor perceptions, resulting in severe oscillation in stock prices.

Managing Market Risk

Well, you can’t control the market risks from taking a front seat in your financial life, though you can take some steps to manage and mitigate them.

forex-education

As globalization seeped through all leading economies and market segments, a majority of fintech institutions started realizing the criticality of an enhanced operational risk, especially related to cyber-security, IT failures and data theft. Amid this, cyber risks and data theft issues posed key challenges, followed by IT failures and outsourcing issues. The revolution of digitization did many goods to our society, but the moment banks got dependent on single computer networking setups, the vulnerability of confidential customer data leakage multiplied. As a result, the need for data analysts and market researchers spiked up – they are the trained souls who possess both the experience and expertise to tackle diverse investment portfolios for clients in the best way possible to fetch maximum profits.

For that, affluent market risk courses in Delhi are available around – train your mind well, before taking the big leap in the big field of data analytics. Once you are done, reach DexLab Analytics – their comprehensive Market Risk Modelling using SAS courses are top-of-the-line courses in the industry at present.

Catch market risk modeling demo session here,

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Future of Risk Management: Triggering a Technology Dividend

The Future of Risk Management: Triggering a Technology Dividend

Many factors are constantly shaping and reshaping the structure of risk management today – including global geopolitical inconsistency, macroeconomic headwinds and increasing number of cyber activities – which is extensively damaging and recurring. All this is leading to elevated risk perceptions.

The nature of risks has changed over the years too, as well as the manner of addressing them. Today, to mitigate risk issues, technology plays a crucial role. Headwinds like global and Asian accelerating debt levels, lower projection of productivity growth, increasing levels of policy uncertainty and constant increase of US interest have created a lot of prominent macroeconomic challenges, especially in export-oriented Asian economies. Topping that, budding risks from technological advancements are on the rise, exposing industries to newer challenges like cybersecurity and data fraud.

Explaining the Everlasting Bond between Data and Risk Analytics – @Dexlabanalytics.

As a result, the regulatory scenario of the world is also changing, especially after the global financial crisis. With a wide array of regulations introduced, the issue of risk management has started getting the desired prominence. These increasing regulations have compelled banks to accelerate their compliance activities, while giving increasing pressure on risk-management policymaking. The risk management teams now need to be constantly on a lookout for newer uncertainties – the key to address this concern remains productivity gains, but for that technology needs to be employed to the vast extent.

Cyber Value-at-Risk Model: Quantifying the Value-at-Risk – @Dexlabanalytics.

Hitting a technology dividend

Advanced data analytics, contemporary data and NLP coupled with process digitization offers new robust opportunities for effective market risk management. The technological opportunities can be realized throughout various key functions and levels, but it is the duty of the risk professionals to chalk out a more affordable and fruitful approach to address risk-related issues.

A New Course Alert! DexLab Analytics Launches Market Risk Analytics and Modelling – @Dexlabanalytics.

Check out these 3 principal levers to nab potential opportunities:

Data – Data is the new powerful combat weapon. Financial institutions consist of huge piles of data, where internal and external sources of data continuously pour in at an accelerating rate.  Data, in every form – including transaction, social media, and other sources helps discover real-time customer insights and generate dividends thereafter.

Analytics – Nowadays, machine learning, NLP, advanced analytics and self-learning algorithms are widely available and at achievable prices. The best example to show how advanced analytics is boosting risk management is improving debt collection.

As per conventional debt repayment collection procedure, a lot many calls were asked to make, out of which very few turned out to be successful. But now, with advanced analytics, a set of high-end predictive models are developed to fire up decision-making process. After this, an improved insight about customers can be curated, which can further be developed with better prediction quality.

Processes – With digitization, one gets the opportunity to automate and design risk-monitoring processes to mitigate emerging risks. Nowadays, several financial institutions are implementing machine learning and transaction data to automate monitoring of conduct risk.

Subject to the extent of digitization, the change in factors for risk organization is proposed – in the beginning of digitization, one expects 15-20 percent efficiency gains, while a 60-70% improvement is to be expected in case of a fully digitized risk function, which is quite a show!

Market Risk Analytics: What It is All About – @Dexlabanalytics.

Do you want to know more about market risk modelling techniques? Drop by DexLab Analytics; being a one-stop-destination for Market Risk Modelling using SAS, it boasts of superior training and well-researched study materials.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Explaining the Everlasting Bond between Data and Risk Analytics

Explaining the Everlasting Bond between Data and Risk Analytics

 

The use of data analytics is robustly expanding in the financial sector – and the risk landscape is changing pretty fast. Every day a new innovation in the field of risk analytics is making its way, and sometimes some new risks and its respective strategies are popping up just around the corner. The rise of big data, artificial intelligence and advanced analytics helps companies gain valuable cognizance from data. Computing power, the Internet of Things, drones and machine learning are some of the latest new-age tools to assist companies in taking better decisions, hence increase future profitability. Alike, risk managers implement market risk analytics and big data to manage their day-to-day work activities, while identifying, ascertaining and mitigating risks.

Continue reading “Explaining the Everlasting Bond between Data and Risk Analytics”

Cyber Value-at-Risk Model: Quantifying the Value-at-Risk

Cyber Value-at-Risk Model: Quantifying the Value-at-Risk

Cybersecurity attacks are the new potent threat to businesses. Diligent professionals and big mouth board members have started reviewing their company’s cybersecurity frameworks, while establishing better security controls and discerning deeper insights about the business impact of cybersecurity attacks: what kind of risks are they exposed to? Are they expending too much and need to curtail down? What amount of risk can be reduced using the proposed info security budget? Cyber-insurance, will it fetch better results?

What objectives to secure with Cyber value-at-risk models?

This is the epic question that has triggered the development of Value-at-risk models, especially in the domain of information security. Also known as Cyber VaR, these models are a game-changer. They offer a sound base for quantification of information risk coupled with infusing discipline into the whole process.

Market Risk Analytics: What It is All About – @Dexlabanalytics.

The objective of VaR is:

  • To help risk professionals formulate the notion of cyber risk in plain financial language without using any technical jargons.
  • To enable business professionals achieve a standard balance between safeguarding an organization and running the business by making cost-effective decisions.

Enterprises powered by VaR models for cybersecurity make complicated decision-making as easy as pie. They trigger risk-related discussions, where risks become more consistent, and business-goal driven.

A New Course Alert! DexLab Analytics Launches Market Risk Analytics and Modelling – @Dexlabanalytics.

What exactly is cyber VaR?

In the world of finance, value-at-risk modeling is the statistical methodology to appraise the level of financial risk that a firm is exposed to over a specific period of time.

The VaR is ascertained using these three variables:

  • The amount of conjectured loss
  • The probability of that amount of loss
  • The time frame

Probabilities are effective to evaluate likely losses from the cyber attacks during a specific time period. Top notch global organizations, like World Economic Forum and several regulatory bodies, like The Open Group are revolutionizing the concept of cyber VaR models.

fi1-2

What is its benefit?

VaR was initially developed in 1990’s to boost the investment banking sector, wherein managers were to identify the risks that popped up daily in multiple market reports. From the name itself, you can understand, it is more likely a measurement tool to analyze the financial impact of risky events within a particular time frame.

The most beneficial effect of VaR is that it not only quantifies risk but also pens it down in economic terms that are easily understood by all. It also assists in mitigating long-term challenges by aggregating cyberrisk with various other operational risks within an enterprise risk management system.

Here’s All You Need to Know about DexLab Analytics’ Market Risk Modelling Live Demo Session – @Dexlabanalytics.

How to determine the value of cyber VaR?

 CISOs, Chief information security officers decipher what exactly VaR offers in terms of cyberrisk management. This hi-tech concept is too good to help with crucial decision-making, like addressing cyberrisk appetite and defining the optimal allocation of cyber risk management resources.

Market risk analytics is a new concept in the make. Many organizations have realized its crucial importance, while many are yet to decipher. For the best enterprise risk management certification, drop by DexLab Analytics. They are a leading economic capital model training institute offering state-of-the-art courses to the candidates.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Here’s All You Need to Know about DexLab Analytics’ Market Risk Modelling Live Demo Session

DexLab Analytics brings Market Risk Modelling training to India. Internet has helped people become technology-driven. Digital transformation is evident all around us. No more, gaining knowledge is a task like moving mountains – right from the confinements of your home, you can now get access to a plethora of information and knowledge, thanks to online learning. Several professionals and students are opting for e-learning method of education, owing to its flexibility and ease of access. And India is not lagging behind in this. Several online classes and sessions are being organized by premier data science learning institutes in India, and DexLab Analytics is one of them. 

 
Here’s All You Need to Know about DexLab Analytics’ Market Risk Modelling Live Demo Session
 

DexLab Analytics is here with an intensive live demo session on Market Risk Modelling Online for free. The online workshop is taking place on 25th October, 2017 from 10:00PM IST onwards, and will solely focus on how Market Risk Analytics has grown to be the new in-demand analytics course for the financial sector. Our in-house trainers will extensively explain the nitty-gritty of MRM, including its importance, major components, and why is it a must-to-have skill for the future. The interested candidates are asked to register as soon as possible by penning down a mail to DexLab Analytics, mentioning they would attend the workshop on the specified date and time.

Continue reading “Here’s All You Need to Know about DexLab Analytics’ Market Risk Modelling Live Demo Session”

Market Risk Analytics: What It is All About

Market Risk Analytics: What It is All About

With time, firms need more efficient, versatile and highly functional analytics tools to address new, complex issues related to market risk. Market risk analytics involve a comprehensive set of integrated, scalable and productive solutions for wide-range risk management across various verticals of asset classes.

A New Course Alert! DexLab Analytics Launches Market Risk Analytics and Modelling – @Dexlabanalytics.

Why Risk Analytics?

Risk analytics basically help organizations realize the existence of risks lying under business activities – by facilitating enterprises to identify, determine and manage their company risk. In lieu of this, the pressing need for risk analytics is going to increase across industries in the coming few years. New developments, like real-time risk analytics, which is an advanced form of traditional risk analytics process that calculates risk on a real-time basis, are influencing the entire market, while accentuating its mitigating abilities.

DexLab Analytics Introduces Market Risk Analytics and Modelling Online Session – @Dexlabanalytics.

What the Course Offers?

Many top notch education-providing companies are now offering Market Risk Analytics and Modelling online course to better alleviate and handle risks. Increasing needs to address particular risk-induced challenges and excessive focus on the financial market sector is driving the risk analytics market in India. Hence, learning and honing your skills on market risk is indispensable – DexLab Analytics brings Predictive modelling of market risk using SAS to India. The course module will address key issues, like the different types of risks faced by banks, the 1990’s financial crisis, sources and scope of market risk, theoretical probability distributions, volatility forecasting and clustering models, value at Risk Modelling, quantitative models of market risk and description of key financial products.

Some of the most common types of risks that banks are exposed to are Credit risk, Market risk, Operational risk, Liquidity risk, Business risk, Reputational risk, Systemic risk and Moral hazard. All banks need to establish separate risk management departments to manage, monitor and mitigate such high-flying risks. The concept of probability distributions sheds light on investing options – stock returns are expected to be distributed normally, but the reality may vary. They are mostly used in risk management to determine the probability of an event as well as the proportion of losses that it would strike based on a distribution of historical returns. Clustering models is another branch of risk analytics that helps in identifying groups of similar records and marking the records in accordance to the group in which it belongs. These models are also known as unsupervised learning models. Apart from this, other valuable concepts will be addressed during the online live sessions.

Closing Thoughts

Emergence of real time risk analytics is boosting the market of risk analytics. Technology being the driving factor for real-time analysis trades data to the organizations to balance market volatility. Leading service providers are on their quest to design and develop dynamically configurable risk analytics frameworks for clients. And why not, risk analytics boasts of widespread applications, starting from fraud detection to liquidity risk analysis, credit risk management and product portfolio management – various industries are nowadays looking up to market risk analytics, including banking, financial services, government, healthcare, insurance, manufacturing, transportation and logistics, consumer goods and retail, energy and utilities, telecommunication and information technology (IT), media and entertainment, and many others.

Reach us at DexLab Analytics for over-the-top SAS risk management certification course. Their courses are truly remarkable and perfect to take a step into the world of analytics.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more