neural network machine learning Archives - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Why Pursuing a Certification Course in Machine Learning Makes Sense Than Doing Self-Study?

Why Pursuing a Certification Course in Machine Learning Makes Sense Than Doing Self-Study

If you are aware of the growth opportunities awaiting you in the Machine Learning domain, you must be in a rush to master the Machine Learning skills. Now, there are courses available that aim to sharpen the students with skills they would need to work in a challenging environment. However, some often prefer the self-study mode for developing knowledge in this highly specialized domain. No matter which way you prefer to learn, ultimately your passion and dedication would matter the most, because in both ways you need to put in the hard work and really toil hard to make any progress.

Is self-study a feasible option?

If you have already been through some course and want to go to the advanced level through self-study that’s a different issue, but, for those who are just starting out without any background in science, does it even make any sense to opt for self-study?

Given the way Machine Learning technology is moving fast and creating a demand for professionals with highly specialized industry knowledge, do you think self-study would be enough? Do you think a self-study plan to learn something you have no idea about would work? How much time would you need to devote? What should be your learning route? And how do you know this is the right path to follow?

Before we dive deeper into the discussion, we need to go through some prerequisites for Machine Learning study plan.

Machine learning is a broad field and assuming you are a beginner with no prior knowledge in this domain, you have to be familiar with mathematics, statistics, programming  languages, meaning undergoing a Python certification training</strong>, must be proficient in data handling including analysis and modeling, you have to work on algorithms. So, can you pick up all of these skills one by one via self-study? Add to the list the latest Machine Learning tools and applications you need to grasp.

There will be help available in the form of:

  • There would be vast resources, in forms of e-books, lectures, video tutorials, most of these are free and easily accessible.
  • There are forums, groups out there which you can join and access help
  • You can take part in online competitions

Think it through. How long will it take for you to get from one stage to the next?

 Even though there being no dearth of resources available you would be struggling with your progress and most importantly you would struggle to keep up with the pace the technology is moving ahead. Picking up a programming language, grasping and mastering concepts of linear algebra, probability, data is going to be a mammoth task.

Data Science Machine Learning Certification

What difference a certification course can make?

  • To begin with these courses are designed for people coming from different backgrounds, so, you having or, not having any prior knowledge in mathematics, statistics wouldn’t matter as you would be taught everything from scratch be it math or, Machine Learning Using Python.
  • The programs are designed for both working professionals as well as for beginners, all you need to do is choose the one that suits your specific level.
  • These courses are designed to transform you into an industry-ready professional and you would be under the guidance of professionals who are more than familiar with the nuances of the way the industry functions.
  • The modules would follow a strict schedule and your training path would be well planned out covering all the areas you need to master.
  • You would learn via hands-on training and get to handle projects. Nothing makes you skilled like hands-on training.

Your journey towards a smarter future needs to be through a well mapped-out path, so, be smart about it. DexLab Analytics offers industry-ready courses on Data Science, Machine Learning course in Gurgaon and AI with Python. Take advantage of the courses that are taught by instructors who have both expertise and experience. Time is indeed money, so, stop wasting time and get down to learning.


.

Skewness and Kurtosis: A Definitive Guide

Skewness and Kurtosis: A Definitive Guide

While dealing with data distribution, Skewness and Kurtosis are the two vital concepts that you need to be aware of. Today, we will be discussing both the concepts to help your gain new perspective.

Skewness gives an idea about the shape of the distribution of your data. It helps you identify the side towards which your data is inclined. In such a case, the plot of the distribution is stretched to one side than to the other. This means in case of skewness we can say that the mean, median and mode of your dataset are not equal and does not follow the assumptions of a normally distributed curve.

Positive skewness:- When the curve is stretched towards the right side more it is called a positively skewed curve. In this case mean is greater than median and median is the greater mode

(Mean>Median>Mode)

Let’s see how we can plot a positively skewed graph using python programming language.

  • First we will have to import all the necessary libraries.

  • Then let’s create a data using the following code:-

In the above code we first created an empty list and then created a loop where we are generating a data of 100 observations. The initial value is raised by 0.1 and then each observation is raised by the loop count.

  • To get a visual representation of the above data we will be using the Seaborn library and to add more attributes to our graph we will use the Matplotlib methods.


In the above graph you can see that the data is stretched towards right, hence the data is positively skewed.

  • Now let’s cross validate the notion that whether Mean>Median>Mode or not.


Since each observation in the dataset is unique mode cannot be calculated.

Calculation of skewness:

Formula:-

  • In case we have the value of mode then skewness can be measured by Mode ─ Mean
  • In case mode is ill-defined then skewness can be measured by 3(Mean ─ Median)
  • To obtain relative measures of skewness, as in dispersion we use the following formula:-

When mode is defined:-
When mode is ill-defined:-


To calculate positive skewness using Python programming language we use the following code:-


Negative skewness:- When the curve is stretched towards left side more it is called a negatively skewed curve. In this case mean is less than median and median is  mode.

(Mean<Median<Mode)

Now let’s see how we can plot a negatively skewed graph using python programming language.

Since we have already imported all the necessary libraries we can head towards generating the data.|


In the above code instead of raising the value of observation we are reducing it.

  • To visualize the data we have created again we will use the Seaborn and Matplotlib library.


The above graph is stretched towards left, hence it is negatively skewed.

  • To check whether Mean<Median<Mode or not again we will be using the following code:-


The above result shows that the value of mean is less than mode and since each observation is unique mode cannot be calculated.

  • Now let’s calculate skewness in Python.


Kurtosis

Kurtosis is nothing but the flatness or the peakness of a distribution curve.   

  • Platykurtic :- This kind of distribution has the smallest or the flattest peak.
  • Misokurtic:- This kind of distribution has a medium peak.
  • Leptokurtic:- This kind of distribution has the highest peak.


The video attached below will help you clear any query you might have.

So, this was the discussion on the Skewness and Kurtosis, at the end of this you have definitely become familiar with both concepts. Dexlab Analytics blog has informative posts on diverse topics such as neural network machine learning python which you need to explore to update yourself. Dexlab Analytics offers cutting edge courses like machine learning certification courses in gurgaon.


.

Call us to know more