Machine Learning Using Python Archives - Page 14 of 15 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Can We Fight Discrimination With Better Machine Learning?

Can We Fight Discrimination With Better Machine Learning?

With the increase in use of machine learning, for taking important corporate as well as national operational decisions, it is important to set across some core social domains. They will work to make sure that these decisions are not biased with discrimination against certain categories whatever they may be applied into.

In this post, we will discuss the crucial matters of “threshold classifiers”, a part of some machine learning operations that is critical to the issues of discrimination. With a threshold classifier one can essentially make a yes/no decision, which in turn helps to put things in perspective with one category or the other. Here we will take a look at how these classifiers work, the ways in which they can potentially be biased and how one may be able to turn an unfair classifier into a much fairer one.

By opting for a course on Machine Learning Using Python, you will be able to grasp the subject matter of this topic better.

In order to provide an illustrative example, we will concentrate on loan granting scenarios where the bank may approve or deny a loan based on one single, number computed automatically like a Credit score.

"<center

In the above-mentioned diagram, the dark dots represent people who do pay off their loans and debts, while the lighter dots show those who would not. In an ideal scenario, we may get to work with statistics that cleanly distinguish the classes as in the left example. However, sadly this is far more common to see a situation wherein at the right where the group overlaps.

A standalone statistic can stand in for several different variables, and boiling them down to just one number. In case of the credit score, which is evaluated by looking at several numbers of factors, that include income, promptness in debt repayment and much more. The number might even correctly represent the likelihood that a person may pay off a debt or also default, or might not. This relationship is actually pretty blurred and it is rare to find a statistic that correlates perfectly with real-world outcomes.

And that is exactly where the idea of a “threshold classifier” comes in: the bank selects a particular cut-off or threshold, and the people who have their credit scores are mentioned below it, will be denied of loans and people above it are usually granted the lending. However, real banks have several more additional complexities, but this simple model is often useful for studying some of the fundamental issues. Also to be clear, Google does not use credit scores for their products!

"<center
Take our credit risk management courses in Delhi to know more about financial management with data driven insights.

The above-mentioned diagram makes use of synthetic data to show how a threshold classifier works. For further simplification of the explanation, we will be staying away from realistic credit scores  or the data what you see shows just the simulated data with a score based on the range of 0 to 100.

As can be well understood, selecting a threshold needs some tradeoffs. Too low and the bank wil l end up giving loans to many people who default; if too high many people who actually do deserve a loan will not get them.

So, how to determine the right threshold? That is subjective. One important goal may be to maximize the number of appropriate decisions. (Can you tell us what threshold will do that in this example scenario?)

Another financial situational goal may be to, maximize profit. At the bottom of the above mentioned diagram, is a readout hypothetical “profit” which is based on the model wherein a successful loan will make USD 300, but a default will cost a bank USD 700. So what will be the most profitable threshold? And does it match the threshold with the maximum correct decisions?

Discrimination and categorization:

The aspect of how to make a correct decision is defined, and with sensitivities to which factors will become particularly thorny, when a statistic like a credit score ends up distributed separately in between the two teams.

Let us imagine that we have two teams of people ‘orange’ and ‘blue’. We are keen on making small loans, subject to the following rules:

  • A successful loan will make USD 300
  • But an unsuccessful loan will make USD 700
  • Everyone will have a credit score of range 0 to 100

DexLab Analytics offers credit risk analysis course online for the ease of promoting financial credit risk knowledge and data analytics know-how to the right personnel conveniently.

How to simulate loan decisions for different groups:

Drag the black threshold bars either left or right to alter the cut-offs for loans. Click on the varying preset loan strategies:

In the above mentioned case, the distributions of the two groups are slightly varying. While the blue and the orange people are equivalently likely to pay off a debt. But if you take look for a pair of thresholds that maximize total profit (or click on max profit button), then you will be able to see that the blue group is held in a slightly higher standard than the orange one.

How to improve machine-learning systems:

An important outcome of the paper by Hardt, Price, and Srebro depicted that – when mentioned essentially in any scoring system, it will be possible to efficiently to find the thresholds that meet any of the above mentioned criteria. Put in other words, even if you do not posses control over   the underlying scoring system (which is quite a common case) it will still be possible to attack the issue of discrimination.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Pandora: Blending Music with Machine Learning

Pandora: Blending Music with Machine Learning
 

Erik Schmidt, a Senior Scientist at Pandora is going to propose an insight of recommendations and deeper challenges involved with Pandora at the Machine Intelligence Summit. This global tech event will take place in San Francisco on 23rd and 24th of March 2017. Continue reading “Pandora: Blending Music with Machine Learning”

Uber: Pioneering Machine Learning into Everything it Does

Uber is here as a mobile app, which allows you to request for a ride, but this company has never deemed itself to be a mere transportation service provider, rather it prefers to call itself a technology service provider, more like some logistics company.

 
Uber: Pioneering Machine Learning Into Everything It Does
 

More than a year ago, Danny Lange was appointed as the head of Machine Learning at Uber and he along with his team associates started operations from San Francisco. Being an ardent believer of the benefits that Machine learning can bring upon the society, Lange considers that AI and Machine Learning, if combined together can absolutely solve any business discrepancies, irrespective of the nature of the problem.

Continue reading “Uber: Pioneering Machine Learning into Everything it Does”

Facebook is planning to evaluate its quest for generalised AI

Facebook Artificial Intelligence Researchers

A major misconception about artificial intelligence is the fact that today’s robots possess a very generalized intelligence, however, we are fairly efficient in leveraging large datasets to accomplish otherwise complex tasks. Nevertheless we still fail and fall flat at the prospect of replicating the breadth of human intelligence.

Care to contribute to AI development in today’s world? Then take up a Machine Learning course online with us. But in order to move forward a generalized intelligence, Facebook is ensure that we know how to evaluate the process. In a recently released paper, Facebook’s AI research (FAIR) lab has outlined just that as a part of its CommAI framework.

2

We will need our systems to be able to communicate and will be able to learn through language effectively even when they lack in context and discussing thing in undefined terms.

Furthermore, such systems should be capable of learning up new skills, fairly simply. As per Facebook this skill set is called “learning to learn”. Present machine learning models may be trained on data and be used for classifying defined objects. We can also make use of transfer learning to quickly adapt a model to achieve the same task on the new data, however our machines cannot completely teach themselves without heavy to moderate intervention from the developers.

It is in general agreed upon, that in order to generalize across several tasks, a program should be capable of compositional training. And that is of storing and recombination solutions to sub-problems across the different tasks, as per the team from Facebook.

As per Facebook they consider these capabilities to be of more of a prerequisite to being a generalized AI than the true Turing test. Alan Turing created the original Turing test in the 1950s. It is usually understood to be a means of assessing machine learning intelligence with respect to human intelligence.

However, with the maturation of the field of Ai the Turing test has lost a lot of its relevance. Facebook hopes to offer a nice alternative way to think about the necessary requirements of a modern generalized AI which should be less of a research distraction than the more rigid Turing Test.

The team at FAIR which include – Marco Baroni, Armand Joulin, Allan Jabri, Germán Kruszewski, Angeliki Lazaridou, Klemen Simonic and Tomas Mikolov have also developed another open source platform for the testing and training of AI systems.

For more information on Machine Learning training in Gurgaon or in Delhi NCR, drop by our institute at DexLab Analytics.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

A robot too close to humans! Story of BINA 48

BINA 48 is the world’s most renowned and highly sought after humanoid robot in America. You can visit her there, by driving down a long winding dirt road just west of the Lincoln Gap in Bristol, Vt. Where sits two large yellow houses on a sprawling property that features ten solar panels and a dock over-looking the sunlit pond filled with trout, a homely porch decorated with rocking chairs.

Advances in Machine Learning and Data Analysis Bina 48

 

In the smaller of the two houses resides BINA 48, who is one of the most sought after humanoid who is based on a real personality – Bina Rothblatt.

Continue reading “A robot too close to humans! Story of BINA 48”

Here Are Four Predictions For AI This 2017!

Last year was the year, which saw artificial intelligence, went mainstream.

 

Here Are Four Predictions For AI This 2017!

 

By that, we do not mean just getting filtered raunchy photos on Twitter or getting the fake news suggestions on Facebook.

Here is what to look for in Artificial Intelligence for this New Year:

  • Driven by unprecedented financial support (along with a growing open source ecosystem), founders have been delivering artificial intelligence start-ups at a record high rate.
  • GE, Google, Intel, Microsoft, Facebook, Apple, Salesforce and Samsung, and several other name brands made rigorous AI investments last year.
  • There are now five million homes, which, are talking about their music and shopping choices with the help of Alexa from Amazon.
  • There is a whole new department of U.S. Department of Transportation Committee for self-driving cars. Even a few years ago, there were people talking about 2025 or so for the accessibility of self-driving cars (of level 5 autonomy), but this is a reality now, much before we could reach 2020. It is also amazing to think that self-driving cars may whittle down the 1.2 million annual deaths from automobiles.
  • Also in other interesting news, two AI unicorns just grew their horns, the Cylance in Silicon Valley and iCarbonX in China.
  • Also more than one-fifth of the MIT 50 smartest companies list, include AI as a core approach these days.

Continue reading “Here Are Four Predictions For AI This 2017!”

The Choice Between SAS Vs. R Vs. Python: Which to Learn First?

It is a well-known fact that Python, R and SAS are the most important three languages to be learnt for data analysis.

 

The Choice Between SAS Vs. R Vs. Python: Which to Learn First?

 

If you are a fresh blood in the data science community and are not experienced in any of the above-mentioned languages, then it makes a lot of sense to be acquainted with R, SAS or Python.

Continue reading “The Choice Between SAS Vs. R Vs. Python: Which to Learn First?”

5 Major Problems in AI (Artificial Intelligence)

5 Major Problems in AI (Artificial Intelligence)

Before we get started with the topic, let us first get an idea about its background. Have you ever given a thought as to how many cats does it take to identify one cat?

In this article we will cover the five types of problems that people face with Artificial Intelligence (AI) i.e. we will address the all important question of – in which situation must one make use of AI (artificial intelligence)?

To have a better understanding of such concepts you can take up a Machine Learning course in Delhi.

Here is some background:

Just some time ago, we conducted a strategy workshop for a bunch of senior executives who are running a large multinational company. In that workshop, someone asked this question – “How many cats will it need to identify a cat?”

In this post, we will discuss the problems which can be uniquely resolved through Artificial Intelligence. While this may not be the exact taxonomy, but it still is pretty comprehensive. The main reason we have added extra emphasis on Enterprise AI issues, because we believe that this subject will have a deep impact on many mainstream applications, but despite that a lot of media attention focuses at the more esoteric avenues. Further, information about these concepts are available in our Machine Learning training course.

But before we delve into AI application types, we must discuss the main distinguishing characters between AI / Deep Learning / Machine Learning.

The term Artificial Intelligence by definition implies that machines can reason with the help of this feature. However, here is a better more complete list of AI characteristics:

  1. AI is capable of reasoning: they can solve complex problems through logical deductions on their own
  2. AI has knowledge: the capability to represent knowledge about the world or our understanding of it, that there are numerous events, entities, and varied situations that occur in the world and such elements have properties, which can be categorised.
  3. AI can plan: they have the ability to set and achieve targets. A specific state of the planet, which we desire along with a sequence of actions that can be undertaken which will help us, progress towards it.
  4. AI can communicate: they have the capability to comprehend well-written and spoken language.
  5. AI has its own perception: they have the ability to deduce things about their surrounding world through the visual images, sounds and other external sensory inputs just like us humans!

With developments in Deep Learning algorithms, AI is driven forward. The various deep learning algorithms can detect numerous patterns without having any prior definition of these features. And in a broader sense, Machine Learning means the application of any algorithm which can be applied against a set of data to discover a pattern within the same. Such algorithms have features like supervised, unsupervised, classification, segmentation, or regression. Moreover, while they are very popular, there are many reasons why Deep Learning algorithms may not make other Machine Learning algorithms.

Data Science Machine Learning Certification

The 5 major types of problems with AI:

Now that we have some background knowledge, we can now discuss the five major types of problems with AI:

Domain expertise: troubles involving reasoning based on a complex body of knowledge

This consists of tasks that are based on learning several knowledge bodies like financial, legal, and more, and then formulating a process where the machine will be able to simulate as an expert in the given field.

Domain extension: problems surrounding extension of a complex body of knowledge

In this case, the machine learns a complex body of knowledge like information regarding the existing medication and much more, and then suggests new ideas to the domain itself, like for instance new drugs for curing diseases.

Complex planning: projects that require complicated planning

There are many logistics and scheduling projects, which can be done by current (non AI) algorithms. But as optimization keeps developing and gets more complex AI would slowly grow.

Proficient communicator: tasks that involve developing existing communications

AI and deep learning can offer benefits to many communication modes such as intelligent agents, automatic and much more.

Fresh perception: projects that involve a unique perception

Deep learning and AI can be capable of producing newer forms of perception which enables new services like autonomous automotives and more.

Take up a Machine Learning Certification in order to make a change with AI.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Will AI Replace The Intelligentsia? Google’s AI writes mournful poetry

Will AI Replace The Intelligentsia? Google’s AI writes mournful poetry

It is no new news that Artificial Intelligence can now control self driving cars; they can beat the best humans at highly challenging board games like chess, and even fight cancer. But still one thing it cannot do perfectly is communicate.

So, to help solve this problem Google has been feeding its Artificial Intelligence with more than 11,000 unpublished books, which include more than 3000 steamy romantic titles. And in response the AI has penned down its own version of mournful poems.

2

The poems read something like this:

I went o the store to buy some groceries.

I store to buy some groceries.

I were to buy any groceries.

Horses are to buy any groceries.

Horses are to buy any animal.

Horses the favourite any animal.

Horses the favourite favourite animal.

Horses are my favourite animal.

And here is another one from Google’s AI:

he said.

“no,” he said.

“no,” i said.

“i know,” she said.

“thank you,” she said.

“come with me,” she said.

“talk to me,” she said.

“don’t worry about it,” she said.

 

The way this happened was, Google’s team fed their AI with unpublished works into a neural network and gave the system two sentences from the book; it was then up to this ingenious artificial intelligence to build its own poetry based on available information.

In example above, the team of researchers gave their AI two sentences one about buying some groceries and the other one about horses being a favourite animal (these are the first and the last lines of the above mentioned passages). The team then directed the artificial intelligence to morph between the two sentences.

In the research paper the team further went on to explain the AI system was able to “create coherent and diverse sentences through purely continuous sampling”.

With the use of an autoanecdoter, which is a type of AI network that makes use of data sets to reproduce a result, in this case that was writing sentences, using much fewer steps the team was able to produce these sentences.

The main principle behind this research is to create an Artificial Intelligence which will be proficient in communicating via “natural language sentences”.

This research holds the possibilities of developing a system that is capable of communicating in a more human-like manner. Such a breakthrough is essential in the creation of more useful and responsive chat bots and Artificial Intelligence powered personal assistants like that of Siri and Google Now.

In a similar project, the researchers at Google have been teaching an AI how to understand language by replicating and predicting the work of bygone authors and poets under their project Gutenberg.

This standalone team at Google fed the AI with an input sentence and then asked it to predict what should come next. And by analysing the text, the AI was capable of identifying what author was likely to have written the sentence and was able to emulate his style.

In another incident, on June, 2015 another team of talented researchers at Google were able to create a chatbot that even threatened its creators. The AI learned the art of conversation by analysis of a million movie scripts thereby allowing it to realize and muse on the meaning of life, the colour of blood, and even on deeper subjects like mortality; Ss, much so that the bot could even get angry on its human inquisitor. When the bot was asked with a puzzling philosophical question about what is the meaning of life, it replied by saying – “to live forever”.

In other such similar works, Facebook has also been teaching its artificial intelligence with the use of children’s books. As per the New Scientist which is a social network, it has been using novels such as The Jungle Book, Alice in Wonderland and Peter Pan.

If you are yearning for some more of AI’s written word, then here are the rest of Google AI’s poems.

You’re right.

“All right.

You’re right.

Okay, fine.

“Okay, fine.

Yes, right here.

No, not right now.

“No, not right now.

“Talk to me right now.

Please talk to me right now.

I’ll talk to you right now.

“I’ll talk to you right now.

“You need to talk to me now. —

 

Amazing, isn’t it?

So, what is it?

It hurts, isn’t it?

Why would you do that?

“You can do it.

“I can do it.

I can’t do it.

“I can do it.

“Don’t do it.

“I can do it.

I couldn’t do it. —

 

There is no one else in the world.

There is no one else in sight.

They were the only ones who mattered.

They were the only ones left.

He had to be with me.

She had to be with him.

I had to do this.

I wanted to kill him.

I started to cry.

I turned to him. —

 

I don’t like it, he said.

I waited for what had happened.

It was almost thirty years ago.

It was over thirty years ago.

That was six years ago.

He had died two years ago.

Ten, thirty years ago. — “it’s all right here.

“Everything is all right here.

“It’s all right here.

It’s all right here.

We are all right here.

Come here in five minutes.

“But you need to talk to me now.

 

To feed in adequate information on Machine Learning Using Python, reach us at DexLab Analytics. Our Machine Learning Certification is garnering a lot of attention owing to its program-centric course module.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more