machine learning training in gurgaon Archives - Page 2 of 2 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

5 Problems Machine Learning Can Solve

5 Problems Machine Learning Can Solve

Machine Learning, a subset of Artificial Intelligence, has taken the world by storm. A method of data analysis, it is a system that is equipped with expertise to learn from data, identify patterns and take decisions with minimal human intervention.

From clearing our email inboxes of spam to tagging our friends’ faces in social media photograph uploads, Machine Learning is crucial to all aspects of our lives. Here are some problems that Machine Learning can easily take care of.

Manual Data Entry

The problem of inaccuracy and duplication of data that business houses wish to avoid when automating their processes can be tackled with the help of Machine Learning (ML). A report says, “ML programs use the discovered data to improve the process as more calculations are made. Thus machines can learn to perform time-intensive documentation and data entry tasks.”

Moreover, ML knowledge workers can, nowadays spend more time solving problems of higher-value while ML takes care of repetitive work. “Arria, an AI based firm has developed a natural language processing technology which scans texts and determines the relationship between concepts to write reports.”

Detecting Spam

Spam detection, one of the earliest tasks for ML systems, has upgraded.“Four years ago, email service providers used pre-existing rule-based techniques to remove spam. But now the spam filters create new rules themselves using ML.”This is because of ‘neural networks’ installed in spam filters, “Google now boasts of 0.1 percent of spam rate.”

Neural Networks fitted in spam filters can teach themselves to learn to recognize junk mail and phishing messages “by analyzing rules across an enormous collection of computers. In addition to spam detection, social media websites are using ML as a way to identify and filter abuse.”

Product Recommendation

Unsupervised learning enables companies to put in place a product based recommendation system. By studying purchase history of a customer and a correspondingly large inventory of products, ML models can identify certain products in which a customer is likely to be interested.

“The algorithm identifies hidden pattern among items and focuses on grouping similar products into clusters. A model of this decision process would allow a program to make recommendations to a customer and motivate product purchases.”

Medical Diagnosis

Machine Learning in the medical field is touted to improve patients’ health with minimum costs. “Use cases of ML are making near perfect diagnoses, recommend best medicines, predict readmissions and identify high-risk patients. These predictions are based on the dataset of anonymized patient records and symptoms exhibited by a patient.”

Data Science Machine Learning Certification

Computer Vision

Computer vision “produces numerical or symbolic information from images and high-dimensional data. It involves machine learning, data mining, database knowledge discovery and pattern recognition.” Potential business applications of image recognition technology can be found in healthcare and automobiles. A tech giant has produced a computer vision powered earpiece that can narrate its interpretation of the outside world to a visually impaired person.

Machine Learning has many applications in industries the world over. For more on this, or a related subject, do peruse the DexLab Analytics website. DexLab Analytics is the best Machine Learning course in Delhi.


.

AutoML (Machine Learning) in 2020

AutoML (Machine Learning) in 2020

AutoML, with its ability to perform data pre-processing, ETL tasks, and transformation, is likely to become the most sought after development in computing sciences for more reasons than one.

Data scientists with competent skills who can work on big data, advanced analytics, and predictive models are few and hard to find. However, AutoML programs have made life easier for businesses and organisations by coming to the rescue of lesser skilled professionals.

Bridging the skill gap, AutoML is helping lesser skilled professionals build models using the best diagnostic and predictive analytics tools.

“AutoML packages like auto-sk learn can automatically do the model selection, scoring, and hyperparameter optimisation. Services like Amazon Forecast and Google’s Cloud AutoML also help in determining the algorithm to fit best with the data,” says a report.

With time, the amount of data generated by computer systems will have grown exponentially, and “the world of analytics, AI, machine learning and data science will see a wave of data and training. And, with the increasing amount of data, here’s why AutoML might be the most used technology in 2020.”

Hastening The ML Process

It takes human beings a longer time to build ML models than it takes automatic systems to, and accuracy is not always at par on the part of human beings. It would take less time for AutoML to construct a model and businesses are slowly preferring to use automated machine learning to amplify their predictive power for the need for insights from big data is only growing.

“An ML process typically consists of data pre-processing, feature selection, feature extraction, feature engineering, algorithm selection, and hyperparameter tuning. These take up more time to implement and require considerable expertise; AutoML, on the other hand, removes the trouble of going through some of these tedious processes.”

Addressing The Skills Gap

AutoMLis helping bridge the skills gap, especially in non-tech companies or companies with less data science expertise. “With the launch of Cloud AutoML, based on Neural Architecture Search (NAS) and transfer learning, Google believes that it has the potential to make the existing AI/ML experts more productive along with helping the less skilled engineered to build a powerful AI system.”

AutoML, also, hasmade machine learning a democraticsystem. It has helped “to carry out processes like hyperparameter tuning, selection of algorithms, and finding the appropriate model — as these tasks are tedious and at the same time complex.”

Data Science Machine Learning Certification

Bettering Scalability

Machine Learning requires massive amounts of data to work on and training a model takes a long time, especially if the model is big. “AutoML, on the other hand, makes it easy to handle data, train model, evaluate, experiment, and even deploy the model for different use cases as it takes on the task to find the best algorithm for the task to be done.”

To enrol in a course on AutoML, do peruse the DexLab Analytics website today. DexLab Analytcis is a premiere Machine Learning training institute in Delhi and NCR.


.

Why Machine Learning Matters

Why Machine Learning Matters

Machine Learning, a subset of artificial intelligence, is a process of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that computing systems can learn from data, identify patterns in them and make intelligent decisions with minimal human intervention.

Importance of Machine Learning

The growth in volumes of data sets, and cheaper and more powerful computational processing and affordable data storage has triggered resurgence in interest in machine learning.

“All of these things mean it’s possible to quickly and automatically produce models that can analyze bigger, more complex data and deliver faster, more accurate results – even on a very large scale. And by building precise models, an organization has a better chance of identifying profitable opportunities – or avoiding unknown risks,” a report says.

Uses of Machine Learning

Machine Learning has been adopted by several key industries working with large amounts of data. Machine Learning helps businesses grow by gleaning actionable insights from these data sets.

Financial services

Machine Learning has revolutionised the banking sector giving financial institutions and banks the opportunity to “identify important insights in data, and prevent fraud.” The business insights can help companies identify investment opportunities or help investors know when to trade. “Data mining can also identify clients with high-risk profiles, or use cyber-surveillance to pinpoint warning signs of fraud.”

Government

Governmentsown an unimaginable amount of data and they can use this to their advantage. With the help of machine learning, they can mine data sets for insights. “Analyzing sensor data, for example, identifies ways to increase efficiency and save money. Machine learning can also help detect fraud and minimize identity theft.”

Data Science Machine Learning Certification

Health care

Machine Learning has helped the healthcare industry evolve thanks to wearable devices and sensors that can use data to assess a patient’s health in real time and improve diagnosis and treatment. 

Retail

Machine Learning helps study and analyse customers’ purchase history and recommends what items a customer is likely to prefer buying. It predicts buying patterns and tastes and choices. It helps retailers offer a personalised experience to shoppers, implement a marketing campaign, optimize prices and plan merchandise supply.

Oil and gas

“Finding new energy sources. Analyzing minerals in the ground. Predicting refinery sensor failure. Streamlining oil distribution to make it more efficient and cost-effective. The number of machine learning use cases for this industry is vast – and still expanding.”

Transportation

“Analyzing data to identify patterns and trends is key to the transportation industry, which relies on making routes more efficient and predicting potential problems to increase profitability. The data analysis and modeling aspects of machine learning are important tools to delivery companies, public transportation and other transportation organizations.”

For more on Machine Learning algorithms and artificial intelligence, do checkout the DexLab Analytics blog section. DexLab Analytics is a premiere institute of Machine Learning training in Delhi which trains professionals and students in all aspects of the technological science through both online classes and classes conducted in the National Capital Region.


.

Machine Learning Algorithms in Self-Driving Cars

Machine Learning Algorithms in Self-Driving Cars

Machine Learning algorithms have revolutionized sectors like automation in ways one could have hardly imagined a few years ago. For instance, take the self-driving car. According to a report, with“the integration of sensor data processing in a centralized electronic control unit (ECU) in a car, it is imperative to increase the use of machine learning to perform new tasks. Potential applications include driving scenario classification or driver condition evaluation via data fusion from different internal and external sensors – such as cameras, radars, LIDAR or the Internet of Things.”

An expert explains how machine learning algorithms are used in autonomous cars. Supervised and unsupervised algorithms are used to perceive information through the car’s infotainment system. For instance, the system can relay information about the driver’s health status and direct the vehicle to a nearby hospital if something is found to be wrong. “This machine learning-based application can also incorporate the driver’s gesture and speech recognition, and language translation.”

The algorithms can be classified into two major categories on the basis of their learning ability- supervised algorithm and an unsupervised algorithm.

Supervised algorithms “learn using a training data­set, and keep on learning until they reach the desired level of confidence (minimization of probability error).” They can be sub-classified into classification, regression and dimension reduction or anomaly detection.

Unsupervised algorithms “try to make sense of the available data. That means an algorithm develops a relationship within the available data set to identify patterns, or divides the data set into subgroups based on the level of similarity between them.” Unsupervised algorithms can be largely sub­-classified into clustering and association rule learning.

The third set of machine learning algorithms falls somewhere between supervised and unsupervised learning. Reinforcement learning has sparse and time-­delayed labels – the future rewards. “Based only on those rewards, the agent has to learn to behave in the environment.”

One of the main tasks of any machine learning algorithm in the self­-driving car is continuous rendering of the surrounding environment and the prediction of possible changes to those surroundings. These tasks are mainly divided into four sub-­tasks:

  • Object detection
  • Object Identification or recognition
  • Object classification
  • Object localization and prediction of movement

Machine learning algorithms can be loosely divided into four categories: regression algorithms, pattern recognition, cluster algorithms and decision matrix algorithms. One category of machine learning algorithms can be used to execute two or more different sub­tasks. For example, regression algorithms can be used for object detection as well as for object localization or prediction of movement.

Regression Algorithms

This type of algorithm is used to predict events. “Regression analysis estimates the relationship between two or more variables, compare the effects of variables measured on different scales and are mostly driven by three metrics, namely:

  • The number of independent variables
  • The type of dependent variables
  • The shape of the regression line.”

Pattern Recognition Algorithms (Classification)

“In ADAS, the images obtained through sensors possess all types of environmental data; filtering of the images is required to recognize instances of an object category by ruling out the irrelevant data points. Pattern recognition algorithms are good at ruling out these unusual data points. Recognition of patterns in a data set is an important step before classifying the objects. These types of algorithms can also be defined as data reduction algorithms.”

Clustering

Sometimes the images gathered by the system are unclear and it is difficult to detect and locate objects in them. It is also possible that the classification algorithms may miss the object and fail to classify and report it to the system because the images are low-resolution, with very few data points or discontinuous data. “This type of algorithm is good at discovering structure from data points. Like regression, it describes the class of problem and the class of methods.” The most commonly used type of algorithm is K-­means, Multi-­class Neural Network.”

Decision Matrix Algorithms

“This type of algorithm is good at systematically identifying, analyzing, and rating the performance of relationships between sets of values and information. These algorithms are mainly used for decision-making. Whether a car needs to take a left turn or it needs to brake depends on the level of confidence the algorithms have on the classification, recognition and prediction of the next movement of objects.”

Check out the course structure at DexLab Analytics, a premiere artificial intelligence institute and machine learning institute in Delhi for more on the subject.


.

The Four Important Machine Learning Algorithms in Use

The Four Important Machine Learning Algorithms in Use

Machine Learning, a subset of Artificial Intelligence, has revolutionized the business environment the world over. It has brought actionable insights to business operations and helped increase profits acting as a reliable tool of business operations. In fact, its role in the business environment has become almost indispensable, so much so that machine learning algorithms are needed to maintain competitiveness in the market. Here is a list of machine learning algorithms crucial to businesses.

Supervised Machine Learning Algorithms

Supervised Learning involves those algorithms which involve direct supervision of the operation. In this case, the developer labels sample data corpus and sets strict boundaries upon which the algorithm operates, says a report.

Here human experts act as the tutor or teacher feeding the computer system with input and output data so the computer can learn the patterns.

“Supervised learning algorithms try to model relationships and dependencies between the target prediction output and the input features such that we can predict the output values for new data based on those relationships which it learned from the previous data sets,” says another report.

The most widely used supervised algorithms are Linear Regression; Logistical Regression; Random Forest; Gradient Boosted Trees; Support Vector Machines (SVM); Neural Networks; Decision Trees; Naive Bayes; Nearest Neighbor. Supervised algorithms are used in price prediction and trend forecasting in sales, retail commerce, and stock trading.

Unsupervised Machine Learning Algorithms

Unsupervised Learning is the algorithm which does not involve direct control of the developer or teacher. Unlike in supervised machine learning where the results are known, in the case of unsupervised machine learning algorithms, the desired results are unknown and not yet defined. Another big difference between the two is that supervised learning uses labelled data exclusively, while unsupervised learning feeds on unlabeled data.

The unsupervised machine learning algorithm is used for exploring the structure of the information; extracting valuable insights; detecting patterns; implementing this into its operation to increase efficiency.

Digital marketing and ad tech are the two fields where Unsupervised Learning is used to effectively. Also, this algorithm is often applied to explore customer information and mould the service accordingly.

Data Science Machine Learning Certification

Semi-supervised Machine Learning Algorithms

Semi-supervised learning algorithms represent features of both supervised and unsupervised algorithms. In essence, the semi-supervised model combines some aspects of both into a unique aspect of itself. Semi-supervised machine learning algorithm uses a limited set of labelled sample data to train itself. The limitation results in a partially trained model that later gets the task to label the unlabeled data. Due to the limitations of the sample data set, the results are considered pseudo-labelled data, says a report. Lastly, labelled and pseudo-labelled data sets are combined with each other to create a distinct algorithm that combines descriptive and predictive aspects of supervised and unsupervised learning.

Semi-supervised learning uses the classification process to identify data assets and clustering process to group it into distinct parts.

Legal and Healthcare industries, among others, manage web content classification, image and speech analysis with the help of semi-supervised learning.

Reinforcement Machine Learning Algorithms

Reinforcement learning represents what is commonly understood as machine learning artificial intelligence.

In essence, reinforcement learning is all about developing a self-sustained system that, throughout contiguous sequences of trials and errors, improves itself based on the combination of labelled data and interactions with the incoming data. The method aims at using observations gathered from the interaction with the environment to take actions that would maximize the reward or minimize the risk.

Most common reinforcement learning algorithms include: Q-Learning; Temporal Difference (TD); Monte-Carlo Tree Search (MCTS); Asynchronous Actor-Critic Agents (A3C).

Modern NPCs and other video games use this type of machine learning model a lot. Reinforcement Learning provides flexibility to the AI reactions to the player’s action thus providing viable challenges. Self-driving cars also rely on reinforced learning algorithms.

For more on Machine Learning courses in Delhi, check out the DexLab Analytics course structure today.


.

Call us to know more