Machine Learning training delhi Archives - Page 10 of 10 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

The Timeline of Artificial Intelligence and Robotics

The Timeline of Artificial Intelligence and Robotics

Cities have been constructed sprawling over the miles, heaven-piercing skyscrapers have been built, mountains have been cut across to make way for tunnels, and rivers have been redirected to erect massive dams – in less than 250 years, we propelled from primitive horse-drawn carts to autonomous cars run on highly integrated GPS systems, all because of state-of-the-art technological innovation. The internet has transformed all our lives, forever. Be it artificial intelligence or Internet of Things, they have shaped our society and amplified the pace of high-tech breakthroughs.

One of the most significant and influential developments in the field of technology is the notion of artificial intelligence. Dating back to the 5th century BC, when Greek myths of Hephaestus incorporate the idea of robots, though it couldn’t be executed till the Second World War II, artificial intelligence has indeed come a long way.

 

Come and take a look at this infographic blog to view the timeline of Artificial Intelligence:

 

Evolution of Artificial Intelligence Over the Ages from Infographics

 

In the near future, AI will become a massive sector brimming with promising financial opportunities and unabashed technological superiority. To find out more about AI and how it is going to impact our lives, read our blogs published at DexLab Analytics. We offer excellent Machine Learning training in Gurgaon for aspiring candidates, who want to know more about Machine Learning using Python.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Indian Startups Relying on Artificial Intelligence to Know Their Customer’s Better

Indian-Startups-Relying-on-Artificial-Intelligence-to-Know-Their-Customers-Better

Artificial Intelligence was there decades ago, but everyone is talking about AI and Big Data in India’s startup ecosystem of late.

Budding startups are looking for new talent with AI expertise to inspect and evaluate consumer data and provide customized services to the users. At the same time, tech honchos such as Apple have discovered the huge potentials hidden within Indian companies that help their clients with data processing, image and voice recognition, and no wonders, investors are too hopeful for Indian AI startups.

Discover an intensive and student-friendly Machine Learning course in Delhi. Visit us at DexLab Analytics.

 

Here are a slew of Indian unicorns – companies valued at $1 billion or more that are putting in use the exploding technology of AI in the best way possible:

2

Paytm

An eye-piercing transformation from being an e-wallet to selling flight or movie tickets, Paytm is now implementing machine learning to bring order into chaos. The company’s chief technology offer, Charumitra Pujari, said, “You could Google and try to look for something. But a better world would be when Google could on its own figure out Charu is looking for ‘x’ at this time. That’s exactly what we’re doing at Paytm,” he further added, “If you’ve come to buy a flight ticket, because I understand your purchase cycle, I show that instead of a movie ticket or transactions.”

In order to identify and prevent fraudulent activities, machines are constantly assessing illicit accounts that purposefully sign up to derive advantage of promo codes, or for money laundering intention. The fraud-detection engine is extremely efficient, leaving no room for human error, Pujari stated.

The team at Paytm is versatile – machine learning engineers, software engineers, and data scientists are in action in Toronto, Canada, as well as in Paytm’s headquarters in Noida, India. Currently, they have 60 people working for them in each location – “We know the future is AI and we will need a lot more people,” said Pujari.

Ola cabs

One of the most successful ride-hailing apps in India, Ola uses machine learning tech to track traffic, crack through driver habits, improve customer experience and enhance the life of each vehicle they acquired. AI plays a consequential role in interpreting day-in-day-out variations in demand and to decipher how much supply is required to cater to its increased demand, how variable are traffic predictions and how rainfall affects the productiveness of vehicles.

olacabs-picture

“AI is understanding what is the behavioral profile of a driver partner and, hence, in which way can we train him to be a better driver partner on (the) platform,” co-founder and chief technology officer Ankit Bhati said, the algorithms put into the car-pooling service works great in pulling down travel times by coordinating with various pick-up points and destinations, while sharing one single vehicle, he further added.

Power yourself with unabashed Machine Learning training.

Flipkart

According to a report in Forbes, Flipkart – India’s largest domestic e-commerce player has already re-designed its app’s home screen to give a more personalized version of services to its mushrooming 120 million patrons. Machine learning models crack each customer’s gender, brand preference, store affinity, price range, volume of purchases and more. In fact, in future, the company is going forward to figure out the reasons about when and why the returns are made, and as a result will try to reduce their happenings. 

Flipkart

A squad of 25 data scientists at Flipkart have started using AI to observe the past buyer behavior to predict their future purchases. “If a customer keys in a query for running shoes, we show only the category landing pages of the particular brand the customer wants to see, in the price point and styles that (are) preferred, as gauged by previous buying behaviour, therefore ensuring a faster, smoother checkout process,” Ram Papatla, the vice president of product management at Flipkart, said recently at an interview with a leading daily.

ShopClues, InMobi, SigTuple and EdGE Network are myriad other Indian startup players who are making it really big by utilizing the powerful tentacles of AI and machine learning.

For more such interesting feeds on artificial intelligence and machine learning, follow us at DexLab Analytics. We offer India’s best Machine Learning Using Python courses.  

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Google Is All Set to Wipe Off Artificial Stupidity

Google Is All Set to Wipe Off Artificial Stupidity

Well, human-AI relation needs to improve. Amazon’s Alexa personal assistant is operating in one of the world’s largest online stores and deserves accolade as it pulls out information from Wikipedia. But what if it can’t play that rad pop banger you just heard and responds saying “I’m sorry, I don’t understand the question,”!! Disappointing, right?

All revered digital helpmates including Google’s Google Assistant and Apple’s Siri are capable of producing frustrating coups that can feel like artificial stupidity. Against this, Google has decided to start a new research push to realize and improve the existing relations between humans and AI. PAIR, for People + AI Research initiative was announced this Monday, and it would be shepherded by two data viz crackerjacks, Fernanda Viégas and Martin Wattenberg.

104476359-google-assistant-5.530x298

Get Machine Learning Certification today. DexLab Analytics is here to provide encompassing Machine Learning courses.

Virtual assistants don’t like to be defeated – they get infuriated when they fail to perform a given task. In this context, Viégas says she is keen to study how people outline expectations regarding what systems can and cannot outperform a command – which is to say how virtual assistants should be designed to prick us toward only asking things that it can perform, leaving no room for disappointment.

Making Artificial Intelligence more transparent among people and not just professionals is going to be a major initiative of PAIR. It also released two open source tools to help data scientists grasp the data they are feeding into the Machine Learning systems. Interesting, isn’t it?

The deep learning programs that have recently gained a lot of appreciation in analyzing our personal data or diagnosing life-threatening diseases is of late said to be dubbed as ‘black boxes’ by polemicist researchers, meaning it can be trickier to observe why a system churn out a specific decision, like a diagnosis. So, here lies the problem. In life and death situations inside clinics, or on-road, while driving autonomous vehicles, these faulty algorithms may pose potent risks. Viégas says “The doctor needs to have some sense of what’s happening and why they got a recommendation or prediction.”

Googleplex-Google-Logo-AH-6

Google’s project comes at a time when the human consequences of AI are being questioned the most. Recently, the Ethics and Governance of Artificial Intelligence Fund in association with the Knight Foundation and LinkedIn cofounder Reid Hoffman declared $7.6 million in grants to civil society organizations to review the changes AI is going to cause in labor markets and criminal justice structures. Similarly, Google announces most of PAIR’s work will take place in the open. MIT and Harvard professors Hal Abelson and Brendan Meade are going to join forces with PAIR to study how AI can improve education and science.

google_io_2017_ai_1499777827549

Closing Thoughts – If PAIR can integrate AI seamlessly into prime industries, like healthcare, it would definitely shape roads for new customers to reach Google’s AI-centric cloud business destination. Viégas reveals she will also like to work closely with Google’s product teams, like the ones responsible for developing Google Assistant. According to her, such collaborations are great and comes with an added advantage, as it keeps people hooked to the product, resulting in broader company services. PAIR is a necessary shot to not only help push the society to understand what’s going on between humans and AI but also to boost Google’s bottom line.

DexLab Analytics is your gateway to great career in data analytics. Enroll in a Machine Learning course online and ride on.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Role of Self Service Analytics in Businesses

Role of Self Service Analytics in Businesses

Self Service Analytics is proving useful for business users, who are working on business data without necessarily having a background in technology and statistics. It is essentially bridging the gap between trained data analysts and normal business users.

Following are the characteristics of Self Service Analytics:

  1. Business Users Independence:

Self Service Analytics reduces dependency on IT and Data warehousing teams, thereby reducing the turnaround time for a request made by a business user.

It does so by continuously collating and loading real time data into a singular stream without disparity, which is easily accessible through browsers. Thus, it helps business users in taking decisions on Real-Time basis.

This feature benefits organizations because vital decisions made within time can be more profitable as compared to the traditional way of analysing data, which may not be a good idea in respect to the urgency constraint.

2

  1. Easier and Reduced Cost of Operations:

Often, the company’s data are fragmented and widespread across various divisions. This increases the headache of channelling the data meaningfully and in a wholesome manner.

Further to this, preparing reports using this data becomes a cumbersome job for the IT department or the department, which is serving such request. Hence, it may lead to increased cost of time or decreased quality of efficiency at which the operations have to run. However, many a times, these reports fail to give an overview of the operations in an organisation.

Self-service BI integrates data from different systems and delivers a “Single Version of Truth”. Accessing this data and running computations on it requires only a browser for access and eliminates the need to install, maintain and administer large-footprint software clients on each user’s workstation.

If Self Service Analytics is hosted on SaaS, it will further reduce the cost of machinery and maintenance associated with it. The provision for usage can be increased or decreased in no time according to the usage pattern. This really means that Self Service Analytics helps you adapt with time and Pay-Per-Use model, which is a leading trend in most of the industries.

  1. Resolving the conflict over accuracy:

Typically, a business user using Excel would have a local copy of data and run computations on it. He can merge and transform it by using various formulas and finally derive a conclusion.

This is dangerous because in live operations, data keeps changing and data integrity is at stake by working on local copies. Thus, accuracy in decision-making becomes a game of luck.

In Self Service BI, the data from the source is extracted, transformed and loaded into a unique data model, which goes with all operations. In this case, data integrity is assured. In addition, all business users have the same source of data, removing the risk that working with different local copies have.

Therefore, from the above stated facts, we can conclude that Self Service Analytics is a need for today’s businesses.

However, there are a few risks involved in Self Service Business Analytics:

  1. Loose corporate governance and make data available to business users directly may be taken advantage of in an undue manner.
  2. Business users may not be properly trained or skilled to make decisions.
  3. Relying heavily on any tool without some real life experience and insight into the background of that data can result into an impaired decision-making.

If all the above-mentioned risks are mitigated and proper corporate governance structure is in place, Self Service Analytics can be very beneficial for the success of any organization.

To excel in Self-Service Analytics, why not take up Machine Learning courses in Delhi from DexLab Analytics! They are informative, interesting and elaborate.





 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Machine Learning Training Course and AI Made Lives Easier

How Machine Learning Training Course and AI Made Lives Easier

Technological superiority, the rise of the machines and an eventual apocalypse are often highlighted in sci-fi Hollywood movies. The unfavorable impacts of machine learning and excessive dependence on artificial intelligence have always been the hot topic for several Hollywood blockbusters, since years. And people who watch such movies develop a perception that more the technical advancement, higher is the chances that it will ignite a war against humans.

However, in reality, away from the world of Hollywood and motion pictures, Machine Learning and Artificial Intelligence is creating a sensation! If we look past the hype of Hollywood movies, we will understand that the Rise of Machines is certainly not the end of the world or the harbinger of apocalypse but a window of opportunity to achieve technical convenience.

How Things Got Simpler Using Machine Learning Training Course

Though individual are reaping benefits from AI, but it is the business world that is deriving most of its benefits. You will find AI everywhere- from gaming parlors to the humongous amount of data piled in workstation computers. Extensive research is being carried out in this field and scientists and tech gurus are spending huge amount of time in making this improved technology reach the masses. Also, Google and Facebook have placed their high hopes on AI and have also started implementing it in their products and services. Soon, we will see how easily Machine Learning and AI will stream from one product to another.

Data Science Machine Learning Certification

Who Are The Best Users of Machine Learning?

Machine learning cannot be implemented by every SaaS. Then who can be the active users of machine learning? As stated by a spokesperson of a reputable AI company, the implementation of Machine Learning is suitable for companies that have massive amounts of historical data stored. To train a puppy, you need a handful of treats, similarly to tackle an algorithm you need a vast amount of human corrected error-free data.

Secondly, to get the taste of success the companies, who are thinking of implementing AI, need a proper business case. You need a proper plan before you start operating. Always question yourself, whether your machine learning algorithm will be able to reduce your costs, while offering better value. If yes, then it is a green signal for you!

Take machine Learning course from experts who possess incredible math skills! The Machine Learning course in India is offered by DexLab Analytics. For more details, go through our Machine Learning Certification course brochure uploaded on the website. 

 


.

Can We Fight Discrimination With Better Machine Learning?

Can We Fight Discrimination With Better Machine Learning?

With the increase in use of machine learning, for taking important corporate as well as national operational decisions, it is important to set across some core social domains. They will work to make sure that these decisions are not biased with discrimination against certain categories whatever they may be applied into.

In this post, we will discuss the crucial matters of “threshold classifiers”, a part of some machine learning operations that is critical to the issues of discrimination. With a threshold classifier one can essentially make a yes/no decision, which in turn helps to put things in perspective with one category or the other. Here we will take a look at how these classifiers work, the ways in which they can potentially be biased and how one may be able to turn an unfair classifier into a much fairer one.

By opting for a course on Machine Learning Using Python, you will be able to grasp the subject matter of this topic better.

In order to provide an illustrative example, we will concentrate on loan granting scenarios where the bank may approve or deny a loan based on one single, number computed automatically like a Credit score.

"<center

In the above-mentioned diagram, the dark dots represent people who do pay off their loans and debts, while the lighter dots show those who would not. In an ideal scenario, we may get to work with statistics that cleanly distinguish the classes as in the left example. However, sadly this is far more common to see a situation wherein at the right where the group overlaps.

A standalone statistic can stand in for several different variables, and boiling them down to just one number. In case of the credit score, which is evaluated by looking at several numbers of factors, that include income, promptness in debt repayment and much more. The number might even correctly represent the likelihood that a person may pay off a debt or also default, or might not. This relationship is actually pretty blurred and it is rare to find a statistic that correlates perfectly with real-world outcomes.

And that is exactly where the idea of a “threshold classifier” comes in: the bank selects a particular cut-off or threshold, and the people who have their credit scores are mentioned below it, will be denied of loans and people above it are usually granted the lending. However, real banks have several more additional complexities, but this simple model is often useful for studying some of the fundamental issues. Also to be clear, Google does not use credit scores for their products!

"<center
Take our credit risk management courses in Delhi to know more about financial management with data driven insights.

The above-mentioned diagram makes use of synthetic data to show how a threshold classifier works. For further simplification of the explanation, we will be staying away from realistic credit scores  or the data what you see shows just the simulated data with a score based on the range of 0 to 100.

As can be well understood, selecting a threshold needs some tradeoffs. Too low and the bank wil l end up giving loans to many people who default; if too high many people who actually do deserve a loan will not get them.

So, how to determine the right threshold? That is subjective. One important goal may be to maximize the number of appropriate decisions. (Can you tell us what threshold will do that in this example scenario?)

Another financial situational goal may be to, maximize profit. At the bottom of the above mentioned diagram, is a readout hypothetical “profit” which is based on the model wherein a successful loan will make USD 300, but a default will cost a bank USD 700. So what will be the most profitable threshold? And does it match the threshold with the maximum correct decisions?

Discrimination and categorization:

The aspect of how to make a correct decision is defined, and with sensitivities to which factors will become particularly thorny, when a statistic like a credit score ends up distributed separately in between the two teams.

Let us imagine that we have two teams of people ‘orange’ and ‘blue’. We are keen on making small loans, subject to the following rules:

  • A successful loan will make USD 300
  • But an unsuccessful loan will make USD 700
  • Everyone will have a credit score of range 0 to 100

DexLab Analytics offers credit risk analysis course online for the ease of promoting financial credit risk knowledge and data analytics know-how to the right personnel conveniently.

How to simulate loan decisions for different groups:

Drag the black threshold bars either left or right to alter the cut-offs for loans. Click on the varying preset loan strategies:

In the above mentioned case, the distributions of the two groups are slightly varying. While the blue and the orange people are equivalently likely to pay off a debt. But if you take look for a pair of thresholds that maximize total profit (or click on max profit button), then you will be able to see that the blue group is held in a slightly higher standard than the orange one.

How to improve machine-learning systems:

An important outcome of the paper by Hardt, Price, and Srebro depicted that – when mentioned essentially in any scoring system, it will be possible to efficiently to find the thresholds that meet any of the above mentioned criteria. Put in other words, even if you do not posses control over   the underlying scoring system (which is quite a common case) it will still be possible to attack the issue of discrimination.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Facebook is planning to evaluate its quest for generalised AI

Facebook Artificial Intelligence Researchers

A major misconception about artificial intelligence is the fact that today’s robots possess a very generalized intelligence, however, we are fairly efficient in leveraging large datasets to accomplish otherwise complex tasks. Nevertheless we still fail and fall flat at the prospect of replicating the breadth of human intelligence.

Care to contribute to AI development in today’s world? Then take up a Machine Learning course online with us. But in order to move forward a generalized intelligence, Facebook is ensure that we know how to evaluate the process. In a recently released paper, Facebook’s AI research (FAIR) lab has outlined just that as a part of its CommAI framework.

2

We will need our systems to be able to communicate and will be able to learn through language effectively even when they lack in context and discussing thing in undefined terms.

Furthermore, such systems should be capable of learning up new skills, fairly simply. As per Facebook this skill set is called “learning to learn”. Present machine learning models may be trained on data and be used for classifying defined objects. We can also make use of transfer learning to quickly adapt a model to achieve the same task on the new data, however our machines cannot completely teach themselves without heavy to moderate intervention from the developers.

It is in general agreed upon, that in order to generalize across several tasks, a program should be capable of compositional training. And that is of storing and recombination solutions to sub-problems across the different tasks, as per the team from Facebook.

As per Facebook they consider these capabilities to be of more of a prerequisite to being a generalized AI than the true Turing test. Alan Turing created the original Turing test in the 1950s. It is usually understood to be a means of assessing machine learning intelligence with respect to human intelligence.

However, with the maturation of the field of Ai the Turing test has lost a lot of its relevance. Facebook hopes to offer a nice alternative way to think about the necessary requirements of a modern generalized AI which should be less of a research distraction than the more rigid Turing Test.

The team at FAIR which include – Marco Baroni, Armand Joulin, Allan Jabri, Germán Kruszewski, Angeliki Lazaridou, Klemen Simonic and Tomas Mikolov have also developed another open source platform for the testing and training of AI systems.

For more information on Machine Learning training in Gurgaon or in Delhi NCR, drop by our institute at DexLab Analytics.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Math Behind Machine Learning: How it Works

The Math Behind Machine Learning: How it Works

It is evident that in the last few months, we have had several people showcase their enthusiasm about venturing into the world of data science using Machine Learning techniques. They are keen on probing the statistical regularities and building impeccable data-driven products. but we have made an observation that some may actually lack the necessary mathematical knowledge and intuition to get the framework for achieving results with data. And this is why we have decided to discuss this lacking through our blog.

In the recent times, there has been a noticeable upsurge in the availability of several easy-to-use machine and deep learning packages such as Weka, Tensorflow, scikit learn etc. But you must understand that machine learning as a field is one that has both statistical concepts, probabilistic concepts, computer science and algorithmic concepts to arise from learning intuitively from available data and also is about determining the patterns and hidden insights, which can be used to build intelligent applications. While still having the immense possibilities of Machine Learning and Deep Learning which is a thorough mathematical understanding of many of these techniques which is necessary for a good grasp of the internal workings of algorithms to achieve a good result.

Enrol in the most comprehensive machine learning course in India with us.

Why we must think about the math?

To explain why it is necessary to behind the scenes into the mathematical details of Machine Learning, we have put own a few important points:

  1. To choose the right algorithm which will include giving considerations, to accuracy, to the right training time, complexity of model, number of parameters and the number of features.
  2. To choose parameter settings and to validate the strategies
  3. To indentify the under-fitting and over-fitting by understanding the bias-variance trade off.
  4. For acquiring ample confidence about the interval and uncertainty

 The level of math one will need:

The primary question when one tries to understand an interdisciplinary field such as Machine Learning, is the amount of math needed and the level of math needed to understand these techniques.

The answer to this question is not as simple as it may seem and is multidimensional which, depends upon the level and interest of the individual. Research conducted in these mathematical formulations and theoretical advancements for Machine Learning is an ongoing process and a few researchers are already working on few more advanced techniques. However, we will state the least amount of math that is a must have skill for being a successful Machine learning Engineer/ Scientist is the importance of each and every mathematical concept.

Linear algebra:

This is the math skill to have for the 21st century. One must be well-versed with the topics of Principal Component Analysis (PCA), Singular Value Decomposition (SVD), Eigendecomposition of a matrix, LU Decomposition, QR Decomposition/Factorization, Symmetric Matrices, Orthogonalization & Orthonormalization, Matrix Operations, Projections, Eigenvalues & Eigenvectors, Vector Spaces as these norms are absolutely necessary for the understanding and the optimization methods for machine learning. The best thing about linear algebra is that there are a lot of online resources.

Probability theory and statistics:

Machine learning and statistics are not too different a field. And in reality some people have actually defined Machine Learning as “doing statistics on a Mac”. A few fundamentals that are a must have for machine learning are – Combinatorics, Probability Rules & Axioms, Bayes’ Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods.

Multivariate calculus:

Differential and Integral Calculus, Partial Derivatives, Vector-Values Functions, Directional Gradient, Hessian, Jacobian, Laplacian and Lagragian Distribution are some of the necessary topics necessary for understanding ML.

Data Science Machine Learning Certification

Algorithms and Complex Optimizations:

In order to realize the computational efficiency and scalability of our Machine Learning Algorithm and for exploiting the sparsity in the dataset, this concept is necessary. One must have knowledge of data structures such as Binary Trees, Hashing, Heap, Stack etc, and Dynamic Programming, Randomized & Sublinear Algorithm, Graphs, Gradient/Stochastic Descents and Primal-Dual methods.

A few other mathematical skills that are often necessary for understanding ML are the following Real and Complex Analysis (Sets and Sequences, Topology, Metric Spaces, Single-Valued and Continuous Functions, Limits), Information Theory (Entropy, Information Gain), Function Spaces and Manifolds.

Machine learning training in Gurgaon from experts with in-depth instruction on math skills is offered at DexLab Analytics. Check out our Machine learning certification brochure for the same at the website. 

 


.

Call us to know more