Machine Learning course in Noida Archives - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

What Is The Role Of Big Data In The Pharmaceutical Industry?

What Is The Role Of Big Data In The Pharmaceutical Industry?

Big data is currently trending in almost all sectors as now the awareness of the hidden potential of data is on the rise. The pharmaceutical industry is a warehouse of valuable data that is constantly piling up for years and which if processed could unlock information that holds the key to the next level of innovation and help the industry save a significant amount of money in the process as well. Be it making the clinical trial process more efficient or, ensuring the safety of the patients, big data holds the clue to every issue bothering the industry. The industry has a big need for professionals who have Data science using Python training, because only they can handle the massive amount of data and channelize the information to steer the industry in the right direction.

We are here taking a look at different ways data is influencing the pharmaceutical industry.

Efficient clinical-trial procedure

Clinical trial holds so much importance as the effectiveness of a drug or, a procedure on a select group of patients is tested. The process involves many stages of testing and it could be time-consuming and not to mention the high level of risk factors involved in the process. The trials often go through delays that result in money loss and there is risk involved too as side effects of a specific drug or a component can be life-threatening. However, big data can help in so many ways here, to begin with, it could help filtering patients by analyzing several factors like genetics and select the ones who are eligible for the trials. Furthermore, the patients who are participating in clinical trials could also be monitored in real-time. Even the possible side effects could also be predicted and in turn, would save lives.

Successful sales and marketing efforts

The pharmaceutical industry can see a great difference in marketing efforts if only they use data-driven insight. Analyzing the data the companies could identify the locations and physicians ideal for the promotion of their new drug. They can also identify the needs of the patients and could target their sales representative teams towards that location. This would take the guesswork out of the process and increase the chance of getting a higher ROI. The data can also help them predict market trends as well as understand customer behavior. Another factor to consider here is monitoring the market response to a particular drug and also its performance, as this would help fine-tune marketing strategies.

Collaborative efforts

With the help of data, there could be better collaboration among the different segments that directly impact the industry. The companies could suggest different drugs that could be patient-specific and the physicians could use real-time patient data to decide whether the suggestions should be implemented in the treatment plan. There could be internal and external collaborations as well to improve the overall industry functioning. Be it reaching out to researchers or, CROs, establishing a strong link can help the industry move further.

Predictive analysis

A new drug might be effective in handling a particular health issue and could revolutionize the treatment procedure but, the presence of certain compounds might prove to be fatal for certain patients and drug toxicity if not detected at an early stage could endanger a particular patient. So, using predictive analysis a patient data could be analyzed to determine the genetic factors, disease history, as well as lifestyle. The smart algorithms thereby help identify the risk factors and makes it possible to take a personalized approach regarding medication that could prove to be more effective rather than some random medication.

Big data can increase the efficiency of the pharmaceutical industry in more ways than one, but compared to other industries somehow this industry still hasn’t been able to utilize the full potential of big data, due to factors like privacy and, monetary issues. The lack of trained professionals could also prove to be a big obstacle. Sending their select professionals for Data Science training, could prove to be a big boon for them in the future.


.

AI in Cyber Security: Knowing the Difference between Machine Learning and Deep Learning

AI in Cyber Security: Knowing the Difference between Machine Learning and Deep Learning

The need of the hour in business world is continuous innovation in the field of cyber security. Security vendors constantly brainstorm ideas and methods that’ll keep them ahead of cybercriminals. The gravity of the problem can be understood from a report by Sophos which mentions that almost 50% of Australian businesses were affected by ransomware attacks in 2017.

To keep functioning amidst such threats, businesses require innovative technologies, and artificial intelligence is one such tool that has become vital for cyber security.

2

Artificial Intelligence

AI is a trendy term now, thanks to blockbuster Bollywood movies made on AI!

AI is an all-embracing principle that includes a number of technologies─ machine learning and deep learning being important ones among them. Basically, artificial intelligence enables machines to learn on their own from experience, modify techniques when fed with new data sets and carry out tasks that are human-like. When the principles of AI are applied to cyber security, we call it predictive security. AI helps to identify and check if files contain malware, which is carried out with the help of machine learning as well as deep learning. Although these two branches use similar AI principles, the two fields are fundamentally very different.

Moving on, let’s explore their basic differences.

Machine Learning

Machine learning is an artificial system that learns from examples and generates knowledge from past experiences. ML technology doesn’t simply memorize examples; rather it picks up laws and patterns and applies it later where relevant.

Considering today’s advanced threat landscape, conventional approaches fail to offer strong protection to a system. Malware programs are sometimes designed to make slight changes and breach traditional systems. In such situations, machine learning can be a better security option as it can detect these unknown and modified malwares too.

An important advantage of machine learning is that it keeps evolving and improving as it is used more and fed with more data. Machine learning algorithms scrutinize file elements in order to comprehend the nature of attacks, which includes simple things like file size as well as complex things like part of codes.

Deep Learning

The benefits of employing machine learning techniques in cyber security are numerous. However, it has some drawbacks too, which can be overcome with deep learning. The main limitations of ML are its inability to handle many variables at once, requirement of huge computing powers and using up a lot of space. In deep learning, unstructured data is stored in neural networks and decisions are made using predictive reasoning, which is modeled on the workings of human brain. This structure has potential to manage numerous points of information without hampering speed of the system.

Deep learning can form better idea of the big picture because it doesn’t include programs designed to solve a particular problem, rather it includes mathematical models that learn over time. A model is developed such that it can explain well what it ‘’sees’’. For this, large amount of data is used, such as trends, malicious URLs and other modes of attacks.

Cyber attackers need to be correct in their methods only once in order to breach an enterprise. On top of that, security threats are becoming more innovative each day. Hence, technologies like deep learning and machine learning need to be the founding stones of modern security systems. Understandably, these skills are also very high in demand. Artificial Intelligence certification courses are hugely popular. If this subject interests you, then don’t delay in enrolling for deep learning courses in Delhi or machine learning courses in Gurgaon from leading institute DexLab Analytics.

 
Reference: www.cso.com.au/article/648861/artificial-intelligence-vs-machine-learning-vs-deep-learning-what-difference
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

A Success Story: Evolution of India’s Startup Ecosystem in 2018

A Success Story: Evolution of India’s Startup Ecosystem in 2018

India’s startup ecosystem is gaining accolades. Steering away from the conventional, India’s young generation is pursuing the virgin path of entrepreneurship by ditching lucrative job offers from MNCs and government undertakings – the entire industry is witnessing an explosion of cutting-edge startups addressing real problems, framing solutions and satisfying mass level.

Interestingly, 2018 has been the year of success for Indian startups or entrepreneurs venturing into the promising unknown. Why? In total, 8 Indian startups, namely Oyo, Zomato, Paytm Mall, Udaan, Swiggy, Freshworks, Policybazaar and Byju’s crossed the $1 billion net worth mark this year and joined the raft of most-revered 18 Indian unicorns.

Besides attracting investments from domestic venture capitalists, these startups are bathed in global investments – foreign investors pumped in vast amounts on our homegrown startups to capitalize their activities. Thanks to their generosity, India proudly ranks as the 3rd largest startup ecosystem in the world, next to the United Nations and United Kingdom with its 7, 700 tech startups.

2

Nevertheless, our phenomenal startup ecosystem has some grey areas too, which are addressed below:

Startup Initiatives

No doubt, the Indian government is taking conscious efforts to support the startup culture in the country, and for that Prime Minister, Narendra Modi has initiated the Startup India Programme. It is a noble step towards ensuring continuous creation and smooth functioning of fresh startups in India with technology in tow.

Thanks to technology, startups growth seemed to be 50% more dynamic this year!

Fund Generation

As compared to struggling years of 2017 and before, 2018 has been the year of driving investments. India experienced a 108% growth in total funding process, a big jump from $2 billion to $4.2 billion. Though investments at later stages skyrocketed, a decline was witnessed in the early stages during funding companies.

“In terms of overall funding, it is a good story. However, we are seeing a continuous decline in seed stage funding of startup companies. If you fall at the seed stage, innovation is hit. It is the area, which needs protection,” shared NASSCOM president Debjani Ghosh, which remains a matter of concern.

Employment Opportunities

Of course, the new startups push job creation numbers. It enhances the employment opportunities. Of late, NASSCOM reported that the epic growth in startup ecosystem resulted in creation of more than 40000 new direct jobs, while indirect jobs soared manifold. Today, the total strength of Indian startup landscape stands at 1.7 Lakh.

In the wake of powerful female voices and gender-neutral campaigns, our domestic startup ecosystem witnessed how women employees called the shots. The numbers of women employees spiked to 14% from 10% and 11% in the last two years, consecutively.

Global Position

Globally, India ranks as the 3rd biggest startup ecosystem in the world, and Bengaluru is the kernel of tech revolution. A report mentioned India’s significance in recording the highest number of startup set ups after Silicon Valley and London across the globe.

Quite interestingly, 40% of startups are launched in Tier 2 and 3 cities, indicating a steady rise of startup culture outside prime cities like Mumbai, Bengaluru and Delhi NCR.

With technology and startup leading the show, it’s high time you expand your in-demand skills of machine learning and data analytics. How? Opt for a good Machine Learning Course in India. It’s a surefire way to learn the basics and hone already learnt skills. For more information on Machine Learning Using Python, drop by DexLab Analytics!

 
The blog has been sourced from ― www.entrepreneur.com/article/322409
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Facebook and Google Have Teamed Up to Expand the Horizons of Artificial Intelligence

Facebook and Google Have Teamed Up to Expand the Horizons of Artificial Intelligence

Tech unicorns, Google and Facebook have joined hands to enhance AI experience, and take it to the next level.

Last week, the two companies revealed that quite a number of engineers are working to sync Facebook’s open source machine learning PyTorch framework with Google’s TPU, or dubbed Tensor Processing Units – the collaboration is one of its kind, and a first time where technology rivals are working on a joint project in technology.

“Today, we’re pleased to announce that engineers on Google’s TPU team are actively collaborating with core PyTorch developers to connect PyTorch to Cloud TPUs,” said Rajen Sheth, Google Cloud director of product management. “The long-term goal is to enable everyone to enjoy the simplicity and flexibility of PyTorch while benefiting from the performance, scalability, and cost-efficiency of Cloud TPUs.”

Joseph Spisak, Facebook product manager for AI added, “Engineers on Google’s Cloud TPU team are in active collaboration with our PyTorch team to enable support for PyTorch 1.0 models on this custom hardware.”

2

2016 was the year when Google first introduced its TPU to the world at the Annual Developer Conference – that year itself the search engine giant pitched the technology to different companies and researchers to support their advanced machine-learning software projects. Since then, Google has been selling access to its TPUs through its cloud computing business instead of going the conventional way of selling chips personally to customers, like Nvidia.

Over the years, AI technology, like Deep Learning have been widening its scopes and capabilities in association with tech bigwigs like Facebook and Google that have been using the robust technology to develop software applications that automatically perform intricate tasks, such as recognizing images in photos.

Since more and more companies are exploring the budding ML domain for years now, they are able to build their own AI software frameworks, mostly the coding tools that are intended to develop customized machine-learning powered software easily and effectively. Also, these companies are heard to offer incredible AI frameworks for free in open source models – the reason behind such an initiative is to popularize them amongst the coders.

For the last couple of years, Google has been on a drive to develop its TPUs to get the best with TensorFlow. Moreover, the initiative of Google to work with Facebook’s PyTorch indicates its willingness to support more than just its own AI framework. “Data scientists and machine learning engineers have a wide variety of open source tools to choose from today when it comes to developing intelligent systems,” shared Blair Hanley Frank, Principal Analyst, Information Services Group. “This announcement is a critical step to help ensure more people have access to the best hardware and software capabilities to create AI models.”

Besides Facebook and Google, Amazon and Microsoft are also expanding their AI investment through its PyTorch software.

DexLab Analytics offers top of the line machine learning training course for data enthusiasts. Their cutting edge course module on machine learning certification is one of the best in the industry – go check out their offer now!

 
The blog has been sourced from — www.dexlabanalytics.com/blog/streaming-huge-amount-of-data-with-the-best-ever-algorithm
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

DexLab Analytics Partnered With DU for Vishleshan’18

DexLab Analytics Partnered With DU for Visheshan’18

DexLab Analytics in association with Department of Business Economics, Delhi University proudly presented Vishleshan’18, an analytics conclave to nurture budding talent pool. Each year, Delhi University organizes an annual competition, where in data enthusiasts get an opportunity to showcase their analytical capabilities and complex problem-solving skills. This year, DexLab Analytics shared the platform with the esteemed institutional body under DU – and we can’t feel more obliged!

Our sincere gratitude and good wishes rests with the Department of Business Economics, University of Delhi; they recognized our efforts towards the data analytics community and shared interest in collaborating with us, which was indeed an honorable moment for us.

Now, coming to the event details, Analytics Conclave – Vishleshan’18 was segregated into two rounds. The first round also known as the elimination round comprised of an online quiz session, candidates were required candidates to be well-versed in all verticals of analytics. The second round was a lot more challenging, because here selected teams were allotted a case study each. In this round, DexLab Analytics played a crucial role – the seasoned consultants actively participated in structuring these all-encompassing case studies.

The case studies were all in sync with this year’s theme ‘AI and Machine Learning: Transforming Decision Making’, which means bagging the winner title was no mean feat. Various teams, all from notable institutes and in accordance to eligibility criteria (only post-graduates or MBA students allowed) participated in the contest. Out of them, only 5 teams were finally selected to present their case studies in front of a distinguished panel of judges at the DU campus on 8th September 2018.

Artificial intelligence and machine learning are driving the technology realm. Not only are they the pioneers of effective decision-making processes but also engines of faster and cheaper predictions for all big and small companies. Next to the US, India is deemed to be biggest hub of artificial intelligence, thus it’s time for prestigious Indian educational institutes, like Delhi University to start training the bright young minds for the next big boom of AI and machine learning. And that’s exactly what they were found doing.

However, as it’s said, teamwork divides the task and multiplies the success – the organizers of Vishleshan’18 approached DexLab Analytics, a leading data analytics training institute in Gurgaon, Delhi NCR. Together, they believed they would better analyze the data acumen of the participants and foster a symbiotic association for more knowledge sharing in the future.

Perhaps, not surprisingly, DexLab Analytics has created a place of its own, in the niche analytics industry. Comprehensive in-demand skill training courses are crafted keeping in mind the students’ requirements and industry demands. Moreover, the consultants who bring in considerable domain experience in the related field are all experienced and loaded with expertise. Together with you, this institute can be considered as a center of excellence in the big data analytics domain!

 

For a more detailed report, click the link below:

www.prlog.org/12728482-dexlab-analytics-is-case-study-partner-for-analytics-conclave-vishleshan-18.html  

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Machine Learning is Driving Out DDoS, The Latest Hazard in Cyber Security

How Machine Learning is Driving Out DDoS, The Latest Hazard in Cyber Security

It is common knowledge that the computer world is under constant threat of security breaches. Furthermore, cyber attacks are becoming more dangerous by the day. Over three trillion dollars are wasted every year owing to cyber crimes. And this huge wastage of money is likely to double by 2021. In a time where the number of internet users is increasing exponentially, it seems surreal to expect that threats can be completely eradicated.

Among a plethora of threats, the most infamous one is DDoS, which stands for distributed denial of service attack. In this malicious form of attack, normal traffic for the targeted server, network or service is disrupted by flooding it and its neighboring infrastructure with tremendous internet traffic. This new evil in cyber security has wreaked havoc with business processes.

The tech ecosystem is becoming increasingly dominated by machine learning. ML techniques provide a new approach to eradicate DDoS attacks. In this blog, we discuss a newly researched ML technique that helps restrain DDoS attacks.

SIP and VoIP

A team of researchers from University of Aegean, Greece, headed by Z Tsiatsikas, has published a study about tackling DDoS with machine learning in SIP-based VoIP systems. The popularity of VoIP systems in hardware ecosystems is the primary reason for choosing it for this study. In this age of internet, VoIP is the common choice for voice as well as multimedia communications.

Session Initiation Protocol (SIP) is the preference for initiating VoIP sessions. The basic structure of SIP/VoIP architecture has been described below:

User Agent (UA): This represents the endpoints of SIP, which are active units of the session. For example, in the case of voice communication, the caller and receiver represent endpoints for the session.

SIP Proxy Server: This entity acts both as client and server during the session. The tasks of the server are:

  • Maintaining send and receive requests
  • Transferring information between users

Registrar: Authentication processes and requests to register for UA are managed by this entity.

The VoIP provider keeps a record of the SIP communication. This is an important step as it gives out information to service providers regarding billing and accounting based activities of users. In addition to this essential data, it may also give out data about intrusion or dubious activities happening in a network. Hence, it is very important to monitor this area. If neglected, it may turn into a hotbed for DDoS attacks.

Combining ML Methods in VoIP

The researchers have employed these five standard ML algorithms in experiments:

  • Sequential minimal optimization
  • Neural networks
  • Naïve Bayes
  • Random Forest
  • Decision trees

In the experiment, communications are taken care of through these algorithms. The network is made anonymous using HMAC (keyed-hash method authentication code) and classification features are created. These algorithms are tested using 15 different DDoS attack situations. This is done using a ‘test bed’ of DDoS simulations. The design, as done by researchers, is shown below:

Image source: Analytics India

Following are some of the parameters of the experiment:

  • 3 to 4 types of Virtual Machines (VMs) have been used for SIP proxy, legitimate users, and for generating attack traffic based on the scenario.
  • Particularly for SIP proxy, popular VoIP server Kamailo (kam, 2014) has been employed.
  • sipp v.3.21 and sipsak2 tools have been employed to simulate patterns for legitimate and DoS attack traffic.
  • For simulation of DDoS attack, SIPpDD tool has also been used
  • Weka tool has been used for machine learning analysis.

Performance

Compared to non-ML detection, these algorithms perform well. Speaking from an intrusion detection viewpoint, Random Forest and decision trees work best. With the rise in attack traffic, there’s drop in the rate of intrusion detection, which signifies the presence of DDoS.

To conclude, it can be said that machine learning surpass traditional methods of detecting attacks. This latest development in cyber security is another example of the rapid progress that machine learning is bringing into every field.

Interested in joining machine learning courses in Delhi? Wait not. Contact DexLab Analytics Right Now and get yourself enrolled for the best machine learning training in Delhi.

 

This article has been sourced from: www.analyticsindiamag.com/machine-learning-chasing-out-ddos-cyber-security

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

LinkedIn Suggests How to Find Machine Learning Experts across Diverse Career Pathways

LinkedIn Suggests How to Find Machine Learning Experts across Diverse Career Pathways

Machine learning skill is fast picking up pace amongst more and more businesses. Each day, a large number of employees are being sucked into the booming field of big data analytics. But, recruiting them can be a tad bit challenging, on the part of employers. In this regard, LinkedIn recently shared some valuable data that defines the standard career path of a machine learning professional, offering insights as to how enterprises can themselves build and nurture such talent.

In the process of conducting such an intensive analysis, LinkedIn scrutinized various profiles across the globe having at least one machine learning skill listed in their profiles. The analysis of profiles spanned from April 2017 to March 2018.

The result of the analysis is interesting; it highlighted the skills the professionals share with each other and at what point of their career they need to adapt to these skills. It also sheds light on what kind of skills are developed just before machine learning – and they are data mining, R and Python, respectively.

LinkedIn has a valuable suggestion for the recruiters – it says companies can seek job candidates that have these abovementioned skills, only to develop machine learning skill later.

2

For state of art Machine Learning course in India, drop by DexLab Analytics.

Some of the other skills worthy of professionals’ interest are Java and C++ – these programming languages are gaining importance day by day.

The data given below even illustrates which industry absorbs the majority of machine learning talent. Unsurprisingly, one third of professionals powered by machine learning skill falls under higher education and research category, more than a quarter of ML professionals are from software and internet industry and the rest are scattered amongst other industry types.

Following the insights, LinkedIn suggests that enterprises should look beyond their respective industries to seek right ML candidates. According to last year’s data, 22% of people possessing ML skill changed their jobs and amongst them, 72% changed industries.

Moreover, the data helps recruiter identify the right candidate by checking out the combination of his skills as a whole and the skills a ML professional should possess. For example, ML professionals belonging from the finance and banking sector are more likely to be specialized in business analytics, Tableau and SAS, while ML professionals hailing from software industry should have a vast knowledge on a broad spectrum of programming language skills.

Future of Machine Learning

Machine learning is another flourishing branch of AI. While the early AI programs were mostly rule-based and human-dependent, the latest ones possess the striking ability to teach and formulate their own operational rules.

2017 was smashing for witnessing growth of scope and capabilities of machine learning, while 2018 harbors potential for widespread business adoption, says a research from Deloitte.

As parting thoughts, AI is nothing but tools adopted to tackle high-end business problems. Designing a proper application of machine learning includes asking the right questions to the right people to get hold of right solutions.

Interested in Machine Learning Using Python? DexLab Analytics is the go-to training institute for all data hungry souls.

 
References:

zdnet.com/article/looking-for-machine-learning-experts-linkedin-data-shows-how-to-find-them

techrepublic.com/article/machine-learning-the-smart-persons-guide
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Python Introduces New Audiences to the Exciting World of Computer Programming

How Python Introduces New Audiences to the Exciting World of Computer Programming

What was the motivation behind the birth of Python? The language has been searched by American Google users more often than Kim Kardashian in the last one year! And the rate of queries related to Python has trebled since 2010.

Dutch computer scientist, Guido van Rossum, fed up with the shortcomings in commonly used programming languages, developed Python as his Christmas project in 1989. He wanted a language that was simple to read, allowed users to create their own modules for special-purpose coding and then made this package available to others. And lastly he wanted a ‘’short, unique and slightly mysterious’’ name. He named the package after the British comedy group, Monty Python. And Cheese Shop was the chosen name for the package repository.

Nearly three decades after this ground-breaking Christmas invention, the popularity of Python is still growing. According to stats from Stack Overflow, a programming forum, approximately 40% of developers use it and 25% intend to do so. But the programming language isn’t admired by the community of developers alone; it is well-liked the public in general. According to Codecademy, a website that has taught different programming languages to over 45 million novices, Python has the highest demand. Python aficionados, known as Pythonistas, have contributed over 145,000 packages to the Cheese Shop and these cover diverse realms, such as astronomy and game development.

Image source: Economist

Decoding Python’s Fame

Python isn’t perfect. There are other languages that have higher processing efficiency and give users better control over the computer’s processor. However, Python possesses some killer features, which make it a great general purpose language. It has easy-to-learn syntax that simplifies coding. Python is a versatile platform that has a variety of applications.

 

  • The Central Intelligence Agency uses it for hacking
  • Pixar employs it for work related to films
  • Google uses it for crawling web pages
  • Spotify recommends songs with the help of Python

 

Python is also widely used for tasks that are grouped under ‘’non-technical’’. Following are some examples:

 

  • Marketers build statistical models with the help of Python to judge the effectiveness of campaigns.
  • Lecturers use it to find out if the grading system is accurate or not
  • Journalists use codes written in Python for grazing the web for data

 

Professionals who need to trawl through spreadsheets find Python highly valuable for their work. EFinancialCareers, a website dealing with jobs, has reported a fourfold increase between 2015 and 2018 in job listings that mention Python. Citigroup, the reputed American bank, organizes crash courses in Python to train newly hired analysts.

Some of the most appealing packages within the Cheese shop harness the power of AI. Mr. Van Rossum declares that Python is the preferred language for AI researchers. They use it for creating neural networks and identifying patterns from huge data sets. However, the high demand for learning Python comes with certain risks. Novices who know how to use different tools but don’t know their intricacies well are prone to make faulty conclusions without proper supervision.

One solution for this problem is to educate students from an early age. Generally, teaching programming languages is limited to STEM students in American universities. A radical proposal is to offer computer science classes to primary school children. Anticipating a future filled with automated jobs, 90% American parents have expressed desire that their children receive computer programming classes in school.

Presently, 67% of 10-12 year olds have accounts in Code.org. In university level, Python has been ranked the most popular programming language for 2014. While nobody can predict how much longer Python will keep reigning, one thing is for sure, Mr. Rossum’s Christmas invention is truly smart and purposeful.

To the dismay of Pythonistas, on 12th July 2018, he stepped down from the position of supervising the community. The reason being his discomfort with the rising fame!

Well, we hope Python’s glory continues for years to come! To read more blogs on the latest developments in the world of technology, follow DexLab Analytics. If you’re interested in mastering machine learning using Python, then you must check our machine learning courses in Delhi.

 

Reference: economist.com/science-and-technology/2018/07/19/python-has-brought-computer-programming-to-a-vast-new-audience

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

A Comprehensive Guide on the Functioning of Chatbots

A Comprehensive Guide on the Functioning of Chatbots

Chatbot is a technology that is rapidly growing and is likely to power 85% of customer service by 2020. And this is already mid 2018. Though this technology is booming, many are new to the concept of chatbots. To help such newbies, on this blog we will discuss what a chatbot really is and also talk about the different parameters related to it.

So, what is a chatbot?

A chatbot is a computer program that interacts with human users through simulated conversations using the Internet. The chatbot cannot set commands by itself. It simply provides solutions to human queries through the most natural medium of communication, which is chatting and messaging in the language of customers.

The next question that comes to our mind is-

What are the tasks that a chatbot can perform?

In this regard, it must be kept in mind that chatbots are basically programs that automate tasks. The tasks span over a variety of fields, including customer support, appointment scheduling, performing surveys and lead generation. Here are some areas of the business areas where chatbots have been very beneficial:

  1. A chatbot answers FAQs and gives the information customers want about different products and services. In short, businesses keep chatbots to handle all the customer queries. In fact, bots are able to respond to multiple queries at a time!
  2. It helps customers schedule appointments, plan trips and informs them if a product is available or not.

It has been found that companies that use the services of chatbots can save up to 60% of their time!

Why have Chatbots become the talk of town?

Most important reason for their growing popularity is that they allow the company to be present on a platform that is extensively used by customers– online. With the advent of chatbots, brands can be in the same space as their customers, without being physically present. Customers are able to interact with businesses 24/7. Thus, bots act like sales representatives online that are ready to assist customers. This directly leads to higher sales for many businesses. Moreover, chatbots respond depending on the industry it’s employed in and the customer it’s interacting with. Hence, it helps deliver personalized responses to every single user.

Working of a chatbot:

Chatbots are basically a form of AI that is developed by means of complicated programming. There are two main types of chatbots. Some chatbots function through a set of structured questions and answers and some function mainly through machine learning algorithms. The later is more complicated. However, both may look the same to users.

Scripted and structured bots: The chatbots working with structured question and answers have a limited knowledge base. Their skills are limited to correctly answering only specific questions which the bots are programmed to answer. There might be questions that aren’t included in the programming, to which the bot is likely to respond with ‘’I’m sorry, I didn’t understand the question.’’ These bots are as smart as the programming behind them permits. These types of bots are generally used for marketing in Messenger platforms. They perform tasks like sending daily mails and content pieces, generating leads, performing surveys, etc.

Source: DZone

NLP based chatbots: These bots understand language very well and deviations from the standard set of questions won’t baffle them easily. NPL (natural language processing) is a part of machine learning and the incorporation of NPL is what enables these bots to understand the nuances of language so well. Obviously, it takes a lot more work to develop these intelligent chatbots. There are three main concepts in NPL- intent, entity and utterance. Intent and entities are responsible for structuring the chatbot, whereas utterance is responsible for improving the bots with use. The best part about machine learning chatbots is that the more they are interacted with, the cleverer they become.

With the availability of free DIY chatbot platforms, chatbots can now be created without prior knowledge on coding. But, if you wish to be a pro in this field then acquire the necessary skills through the machine learning training in Gurgaon. For all the trending news on big data and related tech, follow DexLab Analytics. We are an institute that provides high-quality machine learning courses in India.

 

Reference: dzone.com/articles/here-is-a-complete-guide-of-chatbots

onlim.com/en/how-do-chatbots-work

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more