Machine Learning course in India Archives - Page 4 of 12 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

A Beginner’s Guide to Learning Data Science Fundamentals

A Beginner’s Guide to Learning Data Science Fundamentals

I’m a data scientist by profession with an actuarial background.

I graduated with a degree in Criminology; it was during university that I fell in love with the power of statistics. A typical problem would involve estimating the likelihood of a house getting burgled on a street, if there has already been a burglary on that street. For the layman, this is part of predictive policing techniques used to tackle crime. More technically, “It involves a Non-Markovian counting process called the “Hawkes Process” which models for “self-exciting” events (like crimes, future stock price movements, or even popularity of political leaders, etc.)

Being able to predict the likelihood of future events (like crimes in this case) was the main thing which drew me to Statistics. On a philosophical level, it’s really a quest for “truth of things” unfettered by the inherent cognitive biases humans are born with (there are 25 I know of).

2

Arguably, Actuaries are the original Data Scientists, turning data in actionable insights since the 18th Century when Alexander Webster with Robert Wallace built a predictive model to calculate the average life expectancy of soldiers going to war using death records. And so, “Insurance” was born to provide cover to the widows and children of the deceased soldiers.

Of course, Alan Turing’s contribution cannot be ignored, which eventually afforded us with the computational power needed to carry out statistical testing on entire populations – thereby Machine Learning was born. To be fair, the history of Data Science is an entire blog of its own. More on that will come later.

The aim of this series of blogs is to initiate anyone daunted by the task of acquiring the very basics of Statistics and Mathematics used in Machine Learning. There are tonnes of online resources which will only list out the topics but will rarely explain why you need to learn them and to what extent. This series will attempt to address this problem adopting a “first principle” approach. Its best to refer back to this article a second time after gaining the very basics of each Topic discussed below:

We will be discussing:

  • Central Limit Theorem
  • Bayes Theorem
  • Probability Theory
  • Point Estimation – MLE’s
  • Confidence Intervals
  • P-values and Significance Test.

This list is by no means exhaustive of the statistical and mathematical concepts you will need in your career as a data scientist. Nevertheless, it provides a solid grounding going into more advanced topics.

Without further due, here goes:

Central Limit Theorem

Central Limit Theorem (CLT) is perhaps one of the most important results in all of Statistics. Essentially, it allows making large sample inference about the Population Mean (μ), as well as making large sample inference about population proportion (p).

So what does this really means?

Consider (X1, X2, X3……..Xn) samples, where n is a large number say, 100. Each sample will have its own respective sample Mean (x̅). This will give us “n” number of sample means. Central Limit Theorem now states:

                                                                                                &

Try to visualise the distribution “of the average of lots of averages”… Essentially, if we have a large number of averages that have been taken from a corresponding large number of samples; then Central Limit theorem allows us to find the distribution of those averages. The beauty of it is that we don’t have to know the parent distribution of the averages. They all tend to Normal… eventually!

Similarly if we were to add up independent and identically distributed (iid) samples, then their corresponding distribution will also tend to a Normal.

Very often in your work as a data scientist a lot of the unknown distributions will tend to Normal, now you can visualise how and more importantly why!

Stay tuned to DexLab Analytics for more articles discussing the topics listed above in depth. To deep dive into data science, I strongly recommend this Big Data Hadoop institute in Delhi NCR. DexLab offers big data courses developed by industry experts, helping you master in-demand skills and carve a successful career as a data scientist.

About the Author: Nish Lau Bakshi is a professional data scientist with an actuarial background and a passion to use the power of statistics to tackle various pressing, daily life problems.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Now Machine Learning Can Predict Premature Death, Says Research

Now Machine Learning Can Predict Premature Death, Says Research

Machine Learning yet again added another feather in its cap; a team of researchers tried and tested a suave machine learning system that can now predict early death. Yes, premature death can now be estimated, courtesy a robust technology and an outstanding panel of researchers from the University of Nottingham! At first, it may sound weird and something straight out of a science fiction novel, but fret not – machine learning has proved itself in improving the status of preventive healthcare and now it’s ready to venture into new unexplored medical territories.

Prediction at Its Best

Published in PLOS ONE in one of their special editions of Machine Learning in Health and Biomedicine, the study delves into how myriad AI and ML tools can be leveraged across diverse healthcare fields. The technology of ML is already reaping benefits in cancer detection, thanks to its sophisticated quantitative power. These new age algorithms are well-equipped to predict death risks of chronic diseases way ahead of time from a widely distributed middle-aged population.

To draw clear conclusions, the team collected data of more than half a million people falling within the age group of 40 and 69 from the UK Biobank. The data collection is from the period 2006-2010, followed up till 2016. With this data in tow, the experts analyze biometric, demographic, lifestyle and clinical factors in each individual subject. Robust machine learning models are used in the process.

Adding in, the team observed dietary consumption of vegetables, fruits and meat per day of each subject. Later, the team from Nottingham University proceeded to predict the mortality of these individuals.

“We mapped the resulting predictions to mortality data from the cohort, using Office of National Statistics death records, the UK cancer registry and ‘hospital episodes’ statistics,” says Dr. Stephen Weng, assistant professor of Epidemiology and Data Science.  “We found machine-learned algorithms were significantly more accurate in predicting death than the standard prediction models developed by a human expert.”

Accuracy and Outcome

The researchers involved in this ambitious project are excited to the bones. They are eager about the outcomes. They are in fact looking forward to a time where medical professionals would be able to distinguish potential health hazards in patients with on-point accuracy and evaluate the following steps that would lead the way towards prevention. “We believe that by clearly reporting these methods in a transparent way, this could help with scientific verification and future development of this exciting field for health care”, shares Dr. Stephen Weng.

As closing thoughts, the research is expected to build the foundation of enhanced medicine capabilities and deliver customized healthcare facilities tailoring risk management for each individual patient. The Nottingham research draws inspiration from a similar study where machine learning techniques were used to predict cardiovascular diseases.

Data Science Machine Learning Certification

In case, you are interested in Machine Learning Using Python training course, DexLab Analytics is the place to be. With a volley of in-demand skill training courses, including Python certification training and AI training, we are one of the best in town. For details, check out our official website RN.

 
The blog has been sourced from
interestingengineering.com/machine-learning-algorithms-are-now-able-to-predict-premature-death
 


.

Deep Learning to Boost Ghost Hunting and Paleontology Efforts

Deep Learning to Boost Ghost Hunting and Paleontology Efforts

Deep leaning technology is taking the world by storm. It is leaving no territory untouched, not even the world of dead! Yes, this robust technology has now started hunting ghosts – for real. Of late, Nature Communication even published a paper highlighting that a ghost population has even contributed to today’s genomes.

With the help of a demographic model structured on deep learning in an Approximate Bayesian Computation framework, it is now possible to delve into the evolutionary history of the Eurasian population in sync with the present-day genetic evidence. Since it is believed that all modern humans have originated Out of Africa, the evolutionary history of the Eurasian population has been identified by introgressions from currently extinct hominins. What’s more, talking about the unknown population, the researchers believe they either trace their roots to Neanderthal-Denisova clade or simply forked early from the Denisova lineage.

2

If you want to take a look at the original paper, click here www.nature.com/articles/s41467-018-08089-7

In addition, the study reflects how the fabulous technology of AI can be leveraged in paleontology. Whether it’s about discovering unpredictable ghosts or unraveling the fading footprints of the whole evolutionary journey, deep learning and AI are taking the bull (paleontology, in this respect) by its horns. According to the paper, researchers studied deep about the evolutionary process of Eurasian population, including past introgression events in OOA (Out of Africa) populations suiting the contemporary genetic evidence and they have produced several simulated evolutionary data, like the total size of ancestral human populations, the exact number of populations, the appropriate time when they branched out from one another, the rate at which they intermixed and so on. Besides, a wide number of simulated genomes for current-day humans have been launched.

The latest and very efficient deep learning method highlights the crucial importance of genomes – they can easily let you know which evolutionary models are most likely to reveal respective genetic patterns. Moreover, if you study closely, you will find that the culture of the entire industry has changed over the past few years. Advanced computers and technology modifications have achieved ‘things’ that were simply impossible with pen and paper a few years back. Perhaps, what’s more interesting is that our perspective of seeing data has changed completely. The potent advances in AI and machine learning have demystified the ways in which algorithms work leading to more concrete shreds of evidence and end-results, which were previously not possible with the age-old traditional methods.

The blog first appeared on www.analyticsindiamag.com/deep-learning-uncovers-ghosts-in-modern-dna

Are you interested in artificial intelligence certification in Delhi NCR? DexLab Analytics is your go-to institute, which is specialized in imparting in-demand skill training courses. Be it artificial intelligence course, data science certification or Python Spark training, DexLab Analytics excels in all – for more information, contact us today.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

AI Jobs: What the Future Holds?

AI Jobs: What the Future Holds?

Technological revolutions have always been challenging, especially how they influence and impact working landscapes. They either bring on an unforeseen crisis or prove a boon; however, fortunately, the latter has always been the case, starting from the innovation of steam engines to Turing machine to computers and now machine learning and artificial intelligence.

The crux of the matter lies in persistence, perseverance and patience, needed to make these high-end technologies work in the desired way and transform the resources into meaningful insights tapping the unrealized opportunities. Talking of which, we are here to discuss the growth and expansion of AI-related job scopes in the workplace, which is expected to generate around 58 million new jobs in the next couple of years. Are you ready?

Data Analysts

Internet of Things, Machine Learning, Data Analytics and Image Analysis are the IT technologies of 2019. An exponential increase in the use of these technologies is to be expected. Humongous volumes of data are going to be leveraged in the next few years, but for that, superior handling and management skill is a pre-requisite. Only expert consultants adept at hoarding, interpreting and examining data in a meaningful manner can strategically fulfill business goals and enhance productivity.

Interested in Machine Learning course in India? Reach us at DexLab Analytics.

IT Trainers

With automation and machine learning becoming mainstream, there is going to be a significant rise in the number of IT Trainer jobs. Businesses have to appoint these professionals for the purpose of two-way training, including human intelligence as well as machines. On one side, they will have to train AI devices to grasp a better understanding of human minds, while, on the other hand, the objective will be training employees so as to utilize the power of AI effectively subject to their job responsibilities and subject profiles. Likewise, there is going to be a gleaming need for machine learning developers and AI researchers who are equipped to instill human-like intelligence and intuition into the machines – making them more efficient, more powerful.

Man-Machine Coordinators

Agreed or not, the interaction between automated bots and human brainpower will lead to immense chaos – if not managed properly. Organizations have great hope in this man-machine partnership, and to ensure they work in sync with each other, business will seek experts, who can devise incredible roadmaps to tap newbie opportunities. The objective of this job profile is to design and manage an interaction system through which machines and humans can mutually collaborate and communicate their abilities and intentions.

Data Science Machine Learning Certification

Security Analysts

Security is crucial. The moment the world switched from offline to online, a whole lot of new set of crimes and frauds came into notice. To protect and safeguard confidential information and high-profile business identities, companies are appointing skilled professionals who are well-trained in tracking, protecting and recovering AI systems and devices from malicious cyber intrusions and attacks. Thus, skill and expertise in information security, networking and guaranteeing privacy is well-appreciated.

No wonder, a good number of jobs are going to dissolve with AI, but also, an ocean of new job opportunities will flow in with time. You just have to hone your skills and for that, we have artificial intelligence certification in Delhi NCR. In situations like this, these kinds of in-demand skill-training courses are your best bet.

 

The blog has been sourced from  www.financialexpress.com/industry/technology/artificial-intelligence-are-you-ready-for-ocean-of-new-jobs-as-many-old-ones-will-vanish/1483437

 


.

Know All about Usage-Driven Grouping of Programming Languages Used in Data Science

Know All about Usage-Driven Grouping of Programming Languages Used in Data Science

Programming skills are indispensable for data science professionals. The main job of machine learning engineers and data scientists is drawing insights from data, and their expertise in programming languages enable them to do this crucial task properly. Research has shown that professionals of the data science field typically work with three languages simultaneously. So, which ones are the most popular? Are some languages more likely to be used together?

Recent studies explain that certain programming languages are used jointly besides other programming languages that are used independently. With the survey data collected from Kaggle’s 2018 Machine Learning and Data Science study, usage patterns of over 18,000 data science experts working with 16 programming languages were analyzed. The research revealed that these languages can actually be categorized into smaller sets, resulting in 5 main groupings. The nature of the groupings is indicative of specific roles or applications that individual groups support, like analytics, front-end work and general-purpose tasks.

2

Principal Component Analysis for Dimension Reduction

In this article, we will explain how Bob E. Hayes, PhD holder, scientist, blogger and data science writer has used principal component analysis, a type of data reduction method, to categorize 16 different programming languages. Herein, the relationship among various languages is inspected before putting them in particular groups. Basically, principal component analysis looks into statistical associations like covariance within a large collection of variables, and then justifies these correlations with the help of a few variables, called components.

Principal component matrix presents the results of this analysis. The matrix is an nXm table, where:

n= total no. of original variables, which in this case are the number of programming languages

m= number of main components

The strength of relationship between each language and underlying components is represented by the elements of the matrix. Overall, the principal component analysis of programming language usage gives us two important insights:

  • How many underlying components (groupings of programming languages) describe the preliminary set of languages
  • The languages that go best with each programming language grouping

Result of Principal Component Analysis:

The nature of this analysis is exploratory, meaning no pre-defined structure was imposed on the data. The result was primarily driven by the type of relationship shared by the 16 languages. The aim was to explain the relationships with as less components as possible. In addition, few rules of thumb were used to establish the number of components. One was to find the number of eigen values with value greater than 1 – that number determines the number of components. Another method is to identify the breaking point in the scree plot, which is a plot of the 16 eigen values.

businessoverbroadway.com

 

5-factor solution was chosen to describe the relationships. This is owing to two reasons – firstly, 5 eigen values were greater than one and secondly, the scree plot showed a breaking point around 6th eigen value.

Following are two key interpretations from the principal component matrix:

  • Values greater than equal to .45 have been made bold
  • The headings of different components are named on the basis of tools that loaded highly on that component. For example, component 4 has been labeled as Python, Bash, Scala because these languages loaded highest on this component, implying respondents are likely to use Bash and Scala if they work with Python. Other 4 components were labeled in a similar manner.

Groupings of Programming Languages

The given data set is appropriately described by 5 tool grouping. Below are given 5 groupings, including the particular languages that fall within the group, meaning they are likely to be used together.

  1. Java, Javascript/Typescript, C#/.NET, PHP
  2. R, SQL, Visual Basic/VBA, SAS/STATA
  3. C/C++, MATLAB
  4. Python, Bash, Scala
  5. Julia, Go, Ruby

One programming language didn’t properly load into any of the components: SQL. However, SQL is used moderately with three programming languages, namely Java (component 1), R (component 2) and Python (component 4).

It is further understood that the groupings are determined by the functionality of different languages in the group. General-purpose programming languages, Python, Scala and Bash, got grouped under a single component, whereas languages used for analytical studies, like R and the other languages under comp. 2, got grouped together. Web applications and front-end work are supported by Java and other tools under component 1.

Conclusion:

Data science enthusiasts can succeed better in their projects and boost their chances of landing specific jobs by choosing correct languages that are suited for the job role they want. Being skilled in a single programming language doesn’t cut it in today’s competitive industry. Seasoned data professionals use a set of languages for their projects. Hence, the result of the principal component analysis implies that it’s wise for data pros to skill up in a few related programming languages rather than a single language, and focus on a specific part of data science.

For more help with your data science learning, get in touch with DexLab Analytics, a leading data analyst training institute in Delhi. Also check our Machine learning courses in Delhi to be trained in the essential and latest skills in the field.

 
Reference: http://customerthink.com/usage-driven-groupings-of-data-science-and-machine-learning-programming-languages
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

More than Statistics, Machine Learning Needs Semantics: Explained

More than Statistics, Machine Learning Needs Semantics: Explained

Of late, machines have achieved somewhat human-like intelligence and accuracy. The deep learning revolution has ushered us into a new era of machine learning tools and systems that perfectly identifies the patterns and predicts future outcomes better than human domain experts. Yet, there exists a critical distinction between man and machines. The difference lies in the way we reason – we, humans like to reason through advanced semantic abstractions, while machines blindly depend on statistics.

The learning process of human beings is intense and in-depth. We prefer to connect the patterns we identify to high order semantic abstractions and our adequate knowledge base helps us evaluate the reason behind such patterns and determine the ones that are most likely to represent our actionable insights.

2

On the other hand, machines blindly look for powerful signals in a pool of data. Lacking any background knowledge or real-life experiences, deep learning algorithms fail to distinguish between relevant and specious indicators. In fact, they purely encode the challenges according to statistics, instead of applying semantics.

This is why diverse data training is high on significance. It makes sure the machines witness an array of counterexamples so that the specious patterns get automatically cancelled out. Also, segmenting images into objects and practicing recognition at the object level is the order of the day. But of course, current deep learning systems are too easy to fool and exceedingly brittle, despite being powerful and highly efficient. They are always on a lookout for correlations in data instead of finding meaning.

Are you interested in deep learning? Delhi is home to a good number of decent deep learning training institutes. Just find a suitable and start learning!

How to Fix?

The best way is to design powerful machine learning systems that can tersely describe the patterns they examine so that a human domain expert can later review them and cast their approval for each pattern. This kind of approach would enhance the efficiency of pattern recognition of the machines. The substantial knowledge of humans coupled with the power of machines is a game changer.

Conversely, one of the key reasons that made machine learning so fetching as compared to human intelligence is its quaint ability to identify a range of weird patterns that would look spurious to human beings but which are actually genuine signals worth considering. This holds true especially in theory-driven domains, such as population-scale human behavior where observational data is very less or mostly unavailable. In situations like this, having humans analyze the patterns put together by machines would be of no use.

End Notes

As closing thoughts, we would like to share that machine learning initiated a renaissance in which deep learning technologies have tapped into unconventional tasks like computer vision and leveraged superhuman precision in an increasing number of fields. And surely we are happy about this.

However, on a wider scale, we have to accept the brittleness of the technology in question. The main problem of today’s machine learning algorithms is that they merely learn the statistical patterns within data without putting brains into them. Once, deep learning solutions start stressing on semantics rather than statistics and incorporate external background knowledge to boost decision making – we can finally chop off the failures of the present generation AI.

Artificial Intelligence is the new kid on the block. Get enrolled in an artificial intelligence course in Delhi and kickstart a career of dreams! For help, reach us at DexLab Analytics.

 

The blog has been sourced from www.forbes.com/sites/kalevleetaru/2019/01/15/why-machine-learning-needs-semantics-not-just-statistics/#789ffe277b5c

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

5 Great Takeaways from Machine Learning Conference 2019

5 Great Takeaways from Machine Learning Conference 2019

Machine Learning Developer Summit, one of the leading Machine Learning conferences of India, happening on the 30th and 31st of January 2019 in Bangalore, aims to assemble machine leaning and data science experts and enthusiasts from all over India. Organized by Analytics India Magazine, this high-level meeting will be the hotspot for conversing about the latest developments in machine learning. Attendees can gather immense knowledge from ML experts and innovators from top tech enterprises, and network with individuals belonging to data sciences. Actually, there are tons of rewards for those attending MLDS 2019. Below are some of the best takeaways:

  1. Creation of Useful Data Lake on AWS

In a talk by reputable Raghuraman Balachandran, Solutions Architect for Amazon Web Services, participants will learn how to design clean, dependable data lakes on AWS cloud. He shall also share his experienced outlook on tackling some common challenges of designing an effective data lake. Mr Balachandran will explain the process to store raw data – unstructured, semi-structured or completely structured – and processed data for different analytical uses.

Data lakes are the most used architectures in data-based companies. This talk will allow attendees to develop a thorough understanding of the concept, which is sure to boost their skill set for getting hired.

2

  1. Improve Inference Phase for Deep Learning Models

Deep learning models require considerable system resources, including high-end CPUs and GPUs for best possible training. Even after exclusive access to such resources, there may be several challenges in the target deployment phase that were absent in the training environment.

Sunil Kumar Vuppala, Principal Scientist at Philips Research, will discuss methods to boost the performance of DL models during their inference phase. Further, he shall talk about using Intel’s inference engine to improve quality of DL models run in Tensorflow/Caffe/Keras via CPUs.

  1. Being more employable amid the explosive growth in AI and its demand

The demand for AI skills will skyrocket in future – so is the prediction of many analysts considering the extremely disruptive nature of AI. However, growth in AI skills isn’t occurring at the expected rate. Amitabh Mishra, who is the CTO at Emcure Pharmaceuticals, addresses the gap in demand and development of AI skills, and shall share his expert thoughts on the topic. Furthermore, he will expand on the requirements in AI field and provide preparation tips for AI professionals.

  1. Walmart AI mission and how to implement AI in low-infrastructure situations

In the talk by Senior Director of Walmart Lab, Prakhar Mehrotra, audiences get a view of Walmart’s progress in India. Walmart Lab is a subsidiary of the global chain Walmart, which focuses on improving customer experience and designing tech that can be used with Merchants to enhance the company’s range. Mr Mehrotra will give details about Wallmart’s AI journey, focusing on the advancements made so far.

  1. ML’s important role in data cleansing

A good ML model comes from a clean data lake. Generally, a significant amount of time and resources invested in building a robust ML model goes on data cleansing activities. Somu Vadali, Chief of Future Group’s CnD Labs Data and Products section, will talk about how ML can be used to clean data more efficiently. He will speak at length about well-structured processes that allow organizations to shift from raw data to features in a speedy and reliable manner. Businesses may find his talk helpful to reduce their time-to-market for new models and increase efficiency of model development.

Machine learning is the biggest trend of IT and data science industry. In fact, day by day it is gaining more prominence in the tech industry, and is likely to become a necessary skill to get bigger in all fields of employment. So, maneuver your career towards excellence by enrolling for machine learning courses in India. Machine learning course in Gurgaon by DexLab Analytics is tailor-made for your specific needs. Both beginners and professionals find these courses apt for their growth.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Being a Statistician Matters More, Here’s Why

Being a Statistician Matters More, Here’s Why

Right data for the right analytics is the crux of the matter. Every data analyst looks for the right data set to bring value to his analytics journey. The best way to understand which data to pick is fact-finding and that is possible through data visualization, basic statistics and other techniques related to statistics and machine learning – and this is exactly where the role of statisticians comes into play. The skill and expertise of statisticians are of higher importance.

2

Below, we have mentioned the 3R’s that boosts the performance of statisticians:

Recognize – Data classification is performed using inferential statistics, descriptive and diverse other sampling techniques.

Ratify – It’s very important to approve your thought process and steer clear from acting on assumptions. To be a fine statistician, you should always indulge in consultations with business stakeholders and draw insights from them. Incorrect data decisions take its toll.

Reinforce – Remember, whenever you assess your data, there will be plenty of things to learn; at each level, you might discover a new approach to an existing problem. The key is to reinforce: consider learning something new and reinforcing it back to the data processing lifecycle sometime later. This kind of approach ensures transparency, fluency and builds a sustainable end-result.

Now, we will talk about the best statistical techniques that need to be applied for better data acknowledgment. This is to say the key to becoming a data analyst is through excelling the nuances of statistics and that is only possible when you possess the skills and expertise – and for that, we are here with some quick measures:

Distribution provides a quick classification view of values within a respective data set and helps us determine an outlier.

Central tendency is used to identify the correlation of each observation against a proposed central value. Mean, Median and Mode are top 3 means of finding that central value.

Dispersion is mostly measured through standard deviation because it offers the best scaled-down view of all the deviations, thus highly recommended.

Understanding and evaluating the data spread is the only way to determine the correlation and draw a conclusion out of the data. You would find different aspects to it when distributed into three equal sections, namely Quartile 1, Quartile 2 and Quartile 3, respectively. The difference between Q1 and Q3 is termed as the interquartile range.

While drawing a conclusion, we would like to say the nature of data holds crucial significance. It decides the course of your outcome. That’s why we suggest you gather and play with your data as long as you like for its going to influence the entire process of decision-making.

On that note, we hope the article has helped you understand the thumb-rule of becoming a good statistician and how you can improve your way of data selection. After all, data selection is the first stepping stone behind designing all machine learning models and solutions.

Saying that, if you are interested in learning machine learning course in Gurgaon, please check out DexLab Analytics. It is a premier data analyst training institute in the heart of Delhi offering state-of-the-art courses.

 

The blog has been sourced from www.analyticsindiamag.com/are-you-a-better-statistician-than-a-data-analyst

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Soaring Importance of Apache Spark in Machine Learning: Explained Here

The Soaring Importance of Apache Spark in Machine Learning: Explained Here

Apache Spark has become an essential part of operations of big technology firms, like Yahoo, Facebook, Amazon and eBay. This is mainly owing to the lightning speed offered by Apache Spark – it is the speediest engine for big data activities. The reason behind this speed: Rather than a disk, it operates on memory (RAM). Hence, data processing in Spark is even faster than in Hadoop.

The main purpose of Apache Spark is offering an integrated platform for big data processes. It also offers robust APIs in Python, Java, R and Scala. Additionally, integration with Hadoop ecosystem is very convenient.

2

Why Apache Spark for ML applications?

Many machine learning processes involve heavy computation. Distributing such processes through Apache Spark is the fastest, simplest and most efficient approach. For the needs of industrial applications, a powerful engine capable of processing data in real time, performing in batch mode and in-memory processing is vital. With Apache Spark, real-time streaming, graph processing, interactive processing and batch processing are possible through a speedy and simple interface. This is why Spark is so popular in ML applications.

Apache Spark Use Cases:

Below are some noteworthy applications of Apache Spark engine across different fields:

Entertainment: In the gaming industry, Apache Spark is used to discover patterns from the firehose of real-time gaming information and come up with swift responses in no time. Jobs like targeted advertising, player retention and auto-adjustment of complexity levels can be deployed to Spark engine.

E-commerce: In the ecommerce sector, providing recommendations in tandem with fresh trends and demands is crucial. This can be achieved because real-time data is relayed to streaming clustering algorithms such as k-means, the results from which are further merged with various unstructured data sources, like customer feedback. ML algorithms with the aid of Apache Spark process the immeasurable chunk of interactions happening between users and an e-com platform, which are expressed via complex graphs.

Finance: In finance, Apache Spark is very helpful in detecting fraud or intrusion and for authentication. When used with ML, it can study business expenses of individuals and frame suggestions the bank must give to expose customers to new products and avenues. Moreover, financial problems are indentified fast and accurately.  PayPal incorporates ML techniques like neural networks to spot unethical or fraud transactions.

Healthcare: Apache Spark is used to analyze medical history of patients and determine who is prone to which ailment in future. Moreover, to bring down processing time, Spark is applied in genomic data sequencing too.

Media: Several websites use Apache Spark together with MongoDB for better video recommendations to users, which is generated from their historical data.

ML and Apache Spark:

Many enterprises have been working with Apache Spark and ML algorithms for improved results. Yahoo, for example, uses Apache Spark along with ML algorithms to collect innovative topics than can enhance user interest. If only ML is used for this purpose, over 20, 000 lines of code in C or C++ will be needed, but with Apache Spark, the programming code is snipped at 150 lines! Another example is Netflix where Apache Spark is used for real-time streaming, providing better video recommendations to users. Streaming technology is dependent on event data, and Apache Spark ML facilities greatly improve the efficiency of video recommendations.

Spark has a separate library labelled MLib for machine learning, which includes algorithms for classification, collaborative filtering, clustering, dimensionality reduction, etc. Classification is basically sorting things into relevant categories. For example in mails, classification is done on the basis of inbox, draft, sent and so on. Many websites suggest products to users depending on their past purchases – this is collaborative filtering. Other applications offered by Apache Spark Mlib are sentiment analysis and customer segmentation.

Conclusion:

Apache Spark is a highly powerful API for machine learning applications. Its aim is wide-scale popularity of big data processing and making machine learning practical and approachable. Challenging tasks like processing massive volumes of data, both real-time and archived, are simplified through Apache Spark. Any kind of streaming and predictive analytics solution benefits hugely from its use.

If this article has piqued your interest in Apache Spark, take the next step right away and join Apache Spark training in Delhi. DexLab Analytics offers one the best Apache Spark certification in Gurgaon – experienced industry professionals train you dedicatedly, so you master this leading technology and make remarkable progress in your line of work.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more