Machine Learning course in India Archives - Page 3 of 12 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Machine Learning in the Healthcare Sector

Machine Learning in the Healthcare Sector

The healthcare industry is one of the most important industries when it comes to human welfare. Research analysis from the U.S. federal government actuaries say that Americans spent $3.65 trillion on health care in 2018(report from Axios) and the Indian healthcare market is expected to reach $ 372 billion by 2022. To reduce cost and to move towards a personalized healthcare system, the industry faces three major hurdles: –

1) Electronic record management
2) Data integration
3) Computer-aided diagnoses.

Machine learning in itself is a vast field with a wide array of tools, techniques, and frameworks that can be exploited and manipulated to cope with these challenges. In today’s time, Machine Learning Using Python is proving to be very helpful in streamlining the administrative processes in hospitals, map and treat life-threatening diseases and personalizing medical treatments.

This blog will focus primarily on the applications of Machine learning in the domain of healthcare.

Real-life Application of Machine learning in the Health Sector

  1. MYCIN system was incepted at Stanford University. The system was developed in order to detect specific strains of bacteria that cause infections. It proposed a good therapy in 69% of the cases which was at that time better than infectious disease experts.
  2. In the 1980s at the University of Pittsburgh, a diagnostic tool named INTERNIST-I was developed to diagnose symptoms of various diseases like flu, pneumonia, diabetes and more. One of the key functionalities of the INTERNIST-I was to be able to detect the problem areas. This is done with a view of being able to remove diagnostics’ likelihood.
  3. AI trained by researchers from Pennsylvania has been developed recently which is capable of predicting patients who are most likely to die within a year. This is assessed based on their heart test results. This AI is capable of predicting the death of patients even if the figures look quite normal to the doctors. The researchers have trained the AI with 1.77 million electrocardiograms (ECG) results. The researchers have made two versions of this Al: one with just the ECG data and the other one with ECG data along with the age and gender of the patients.
  4. P1vital’s PReDicT (Predicting Response to Depression Treatment) built on the Machine Learning algorithms aims to develop a commercially feasible way to diagnose and provide treatment of depression in clinical practice.
  5. KenSci has developed machine learning algorithms to predict illnesses and their cure to enable doctors with the ability to detect specific patterns and indicators of population health risks. This comes under the purview of model disease progression.
  6. Project Hanover developed by Microsoft is using Machine Learning-based technologies for multiple purposes, which includes the development of AI-based technology for cancer treatment and personalizing drug combination for Acute Myeloid Leukemia (AML).
  7. Preserving data in the health care industry has always been a daunting task. However, with the forward-looking steps in analytics-related technology, it has become more manageable over the years. The truth is that even now, a majority of the processes take a lot of time to complete.
  8. Machine learning can prove to be disruptive in the medical sector by automating processes relating to data collection and collation. This is highly profitable in terms of cost-effectiveness. Newer algorithms such as Vector Machines or OCR recognition are designed to automate the task of document reading and classification with high levels of precision and accuracy.

  9. PathAI’s technology uses machine learning to help pathologists make faster and more accurate diagnoses. Furthermore, it also helps in identifying patients who might benefit from a new and different type of treatments or therapies in the future.

Data Science Machine Learning Certification

To Sum Up:

As the modern technologies of Machine Learning, Artificial Intelligence and Big Data Analytics are tottering forth in multiple domains, there is a long path they need to walk to ensure an unflinching success. Besides, it is also important for every one of us to be accustomed to all these new-age technologies.

With an expansion of the quality Machine Learning course in India and Neural Network Machine learning Python, all the reputed institutes are joining hands together to bring in the revolution. The initial days will be slow and hard, but it is no doubt that these cutting edge technologies will transform the medical industry along with a range of other industries, making early diagnoses possible along with a reduction of the overall cost. Besides, with the introduction of successful recommender systems and other promises of personalized healthcare, coupled with systematic management of medical records, Machine Learning will surely usher in the future for good! 

 


.

Machine Learning Jobs in 2019: Freezing your own Job

Machine Learning Jobs in 2019: Freezing your own Job

Machine Learning surely needs no introduction. Joining forces with Data Science and Big Data, Machine Learning is one of the principal technologies, which is carving the future for us. From self-propelled cars to voice assistants, to surgical robots, Artificial Intelligence is already amongst us.

Besides, with this cutting-edge technology, marketing is also witnessing a fresh bloom, irrespective of the field you are working on. Thus, it is obvious that the career opportunities have quickly and radically shifted in the way of the candidates who are well-versed with Machine Learning platforms and languages. If you are also looking forward to shooting your career up, the premium Machine Learning course in India is the place you should reach now!

2

Learning Machine Learning is No More a Pain Now!

Whether you are a professional or a fresher planning your way to be successful as a Machine Learning professional, you must ensure that you are updated. Besides, you should also be careful that you have certain skills in your grip that you can work on!

However, if you are not aware of them still, here are the skills that you need to focus on to rest assured:

Programming Languages

As you speak English and/or your regional languages accepted to your society in order to communicate comprehensibly, you also need to be well-versed with the languages specific to Machine Learning.

In a nutshell, R programming certification and Machine Learning Using Python are undoubtedly the most significant ones when it comes to Machine Learning.

Data Modeling

If you believe that you can already boast of considerable knowledge of R & Python, then you shall extend your knowledge a bit more towards the advanced methods of analysis. Brief know how of the coding structures, Data Modeling and Data Visualization will help you steer your career forwards.

Deep Learning and AI using Python

Statistics and Probability

If you are seeking to make a career out of Machine Learning, it is important to note that you should have a good grip of statistics and probability. Now, with the thorough courses of Python for Data Analysis along with extensive knowledge of statistics and probability from Dexlab Analytics, it will be easier than ever.

Besides all these, you also need to grasp significant insights into the improved algorithms and clustering methods. 

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

A Nifty Guide to Initiate AIOps in 2019

A Nifty Guide to Initiate AIOps in 2019

AIOps (artificial intelligence for IT operations) is the buzz word of the 21st century.

In this digitally-charged world, AIOps platforms are the key. They fuse ML and big data functionalities to boost and partly replace primary IT operations’ programs, including event correlation and analysis, performance monitoring and IT service automation and management.

In simple terms, AIOps is the combined application of data science and machine learning to help mitigate IT operations-related challenges and find faster insights. It fixes high-severity outages in a jiffy. 

The main objective of revolutionary AIOps platforms is to ingest and analyze the aggravating volume, variety and velocity of data and deliver it in a useful manner.

Deep Learning and AI using Python

IT bigwigs are excited about the prospects of applying AI and ML to IT operations.

Gartner expects that big enterprises’ usage of AIOps and other monitoring tools and applications will rise from 5% in 2018 to 30% in 2023. The long-term impact of AIOps on IT operations is predicted to be transformative.

Fortunately, AI capabilities are making headway, and more real-time solutions are being formulated and made available each day.

Read on to know how to get started with AIOPs:

Be prepared

First and foremost, you have to familiarize yourself with all the ML and AI capabilities and vocabulary. It doesn’t matter if you are gearing up for an AIOps project or not. Capabilities and priorities change; so be ready to implement the platform anytime soon.

Select the first few test cases carefully

Small and steady wins the race. The same phrase applies to transformation initiatives. They start small, seize knowledge and iterate from there. Imbibe the same approach for AIOps success.

Enhance your proficiency

Decode the intricacies of AIOps amongst your colleagues by displaying simple techniques. Ascertain your skills and identify the loopholes, then devise a relevant plan to fill up those gaps in-between.

Feel free to experiment

Although a majority of AIOps platforms are complex and costly, there is a substantial number of open-source and relatively low-cost ML software available in the market that lets you evaluate the efficacy of AIOps and ML applications and their uses.

Look beyond IT

Don’t forget to leverage all kinds of data analytics resources available in your organization. Data management is the cornerstone of AIOps. Most of the teams are already skilled in it. Statistical analytics and business analysis are key components of contemporary business frameworks, and many techniques traverse public domains. 

2

Standardize and modernize, as and when required

Prepare your work infrastructure to implement a robust AIOps adoption by embracing secure automation architecture, immutable infrastructure patterns and infrastructure as code (IaC).

Interested in learning more about Machine Learning Using Python? Feel free to reach us at DexLab Analytics. We’re a premier learning platform specialized in offering in-demand skill training courses to the interested candidates.

 

The blog has been sourced from ― www.gartner.com/smarterwithgartner/how-to-get-started-with-aiops

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Take a Deep Look on How Machine Learning Boosts Business Growth!

Take a Deep Look on How Machine Learning Boosts Business Growth!

Machine Learning is the technology of the future and the rise of it is, well, shocking! Numerous businesses have already started adopting Machine Learning into their business strategy which is ultimately culminating towards their growth. You can also get the most of Machine Learning by going for the best Machine Learning course in India without wasting hours on the internet.

This new and improving technology is showing marked results in making a particular business more efficient, enhancing customer relationships and driving more sales than ever. You can get right on to Machine Learning Significantly Aids in Improving the Business Performance: Learn the Hows and learn about Machine Learning and its rising curve.

Here we have decided to discuss in details about the ways how Machine Learning is helping business touch great heights:

2

Natural Language

One of the major setbacks in the industry of computer science was the inability of computers to comprehend our natural language or the way we speak in our everyday life. This is slowly changing with the rapid growth and considerable research and development on Machine Learning. 

It looks like we have come a long way from the crude search terms that we used to generate the results that we wanted. The AI-driven programs of now, with the help of Machine Learning, can figure out the essence of our conversations and also capitalizing largely on the nuances of our language. Most importantly, they learn from past experiences, which is highly progressive.

Logistics

The retail industry and that of logistics are largely relying on Python for Data Analysis and this in turn, is making them future-proof.

Retail giants like Amazon are encouraging the use of Machine Learning to sharpen the efficiency of their company with new features and technology like “anticipatory shopping” protocol. Retail analytics using Python is becoming formidable.

Even in the field of logistics, the inclusion of Machine Learning is proving a boon!

Manufacturing Industry

Innumerable manufacturing companies are adopting the budding technology of Machine Learning and utilizing it in almost every stage of production, simply because the AI-driven technology reduces unnecessary expenses. 

Companies like Seebo, are taking up Python seriously to build accurate data analytics software. Moreover, machine learning is estimated to cut down on the delivery times by 30% and surprisingly save fuel by 12%. According to the reports, the programs fed on AI would even reduce the maintenance costs by 20 – 30%.

Deep Learning and AI using Python

Consumer Data

We have already seen a world of data collection which has been on a rise for years. Now, finally, with the rise of machine learning, the companies are looking forward to making some use of all these data that they have accumulated. In the coming years, we will see AI improving powered by Machine Learning to make the world productive and smart all the more.

You can take a look at A DISCUSSION ABOUT ARTIFICIAL INTELLIGENCE: KNOWING AI CLOSELY if you are interested in AI. Stay glued to our website for more updates and information from the world of technology!

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Machine Learning Significantly Aids in Improving the Business Performance: Learn the Hows

Machine Learning Significantly Aids in Improving the Business Performance: Learn the Hows

According to Forbes, Machine Learning is quickly growing up to be the biggest technology for the progress of businesses of the future. Furthermore, it will be able to add another $2.6 trillion in value, to the sales and marketing industry by 2020. Even in the field of manufacturing and logistics, it is estimated to add up to $2 trillion.

We are already seeing the extensive support that the AI-driven technology is lending to varied businesses which have joined hands with Machine Learning. This collaboration is bringing forth shocking results for the businesses, improving customer relationships, fueling sales and increasing the overall efficiency of the industry.

The total investments in Machine Learning are estimated to scale up reaching the $77 billion mark. So, if you want to enrol yourself for quality Machine Learning courses then, avail of the best Machine Learning course in India.

2

To Brief About Machine Learning

Machine Learning is a brand new and extremely progressive discipline at the core of which lies mathematics, statics and artificial intelligence (AI).

The basic difference between Artificial Intelligence and Machine Learning is that the former deals with the engineers writing programs for the AI to carry out specific tasks. Whereas, Machine Learning demands the engineers to write algorithms that can teach computers to write programs for themselves.

Machine Learning stresses primarily on developing the intelligence of a program and its capability of learning from past experiences. Thus, they learn from every previous interaction and each of the experiences from the past and finally, churns out the fitting solution, no matter what the circumstance is.

Therefore, a large number of businesses are incorporating Machine Learning, leading to the growth of their businesses and making their business future proof.

Deep Learning and AI using Python

To list down some of the ways how Machine Learning boosts the business performance are:

  • This new technology aids in developing software to understand the natural human language.
  • Machine Learning further improves the efficiency of logistics and transportation networks.
  • It also aids in building preventive maintenance, thereby lessening the equipment breakdowns and increasing profits.
  • Machine Learning can also be extremely useful in collecting consumer data to analyse customer profiles. This, in turn, will maximise sales and improve brand loyalty.

If you like our article, you can also find us on Facebook, Linkedin and subscribe for more such interesting articles on technology from Dexlab Analytics.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Application of Harmonic Mean using R and Python

Application of Harmonic Mean using R and Python

Harmonic mean, for a set of observations is the number of observations divided by the sum of the reciprocals of the values and it cannot be defined if some of the values are zero.

This blog is in continuation with STATISTICAL APPLICATION IN R & PYTHON: CHAPTER 1 – MEASURE OF CENTRAL TENDENCY. However, here we will discover Harmonic mean and its application using Python and R.

2

Application:

A milk company sold milk at the rates of 10,16.5,5,13.07,15.23,14.56,12.5,12,30,32, 15.5, 16 rupees per liter in twelve different months (January-December), If an equal amount of money is spent on milk by a family in the ten months. Calculate the average price in rupees per month.

Table for the problem:

Month

Rates (Rupees/Liter)

January

10

February

16.5

March

5

April

13.07

May

15.23

June

14.56

July

12.5

August

12

September

30

October

32

November

15.5

December

16

Calculate Harmonic Mean in R:-

So, the average rate of the milk in rupees/liter is 12.95349 = 13 Rs/liter (Approx)

We get this answer from the Harmonic Mean, calculated in R.

Calculate Harmonic Mean in Python:-

First, make a data frame of the available data in Python.

Now, calculate the Harmonic mean from the following data frame.

So, the average rate of the milk in rupees/liter is 12.953491609077956 = 13 Rs/Liter (Approx)

We get this answer from Harmonic mean, calculated in Python.

Summing it Up:

In this data, we have a few large values which are putting an effect on the average value, if we calculate the average in Arithmetic mean, but in Harmonic mean, we get a perfect average from the data, and also for calculating the average rate.

Use of Harmonic mean is very limited. Harmonic mean gives the largest value to the smallest item and smallest value to the largest item.

Where there are a few extremely large or small values, Harmonic mean is preferable to Arithmetic mean as an average.

The Harmonic mean is mainly useful in averages involving time, rate & price.

Deep Learning and AI using Python

Note – If you want to learn the calculation of Geometric Mean, you can check our post on CALCULATING GEOMETRIC MEAN USING R AND PYTHON.

Dexlab Analytics is a peerless institute for Python Certification Training in Delhi. Therefore, for tailor-made courses in Python, Deep Learning, Machine Learning, Neural Networks, reach us ASAP!

You can even follow us on Social Media. We are available both in Facebook and Instagram.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Rising Popularity of Python in Data Science

The Rising Popularity of Python in Data Science

Python is the preferred programming language for data scientists. They need an easy-to-use language that has decent library availability and great community participation. Projects that have inactive communities are usually less likely to maintain or update their platforms, which is not the case with Python.

What exactly makes Python so ideal for data science? We have examined why Python is so prevalent in the booming data science industry — and how you can use it for in your big data and machine learning projects.

Deep Learning and AI using Python

Why Python is Dominating?

Python has long been known as a simple programming language to pick up, from a syntax point of view, anyway. Python also has an active community with a vast selection of libraries and resources. The result? You have a programming platform that makes sense of how to use emerging technologies like machine learning and data science.

Professionals working with data science applications don’t want to be bogged down with complicated programming requirements. They want to use programming languages like Python and Ruby to perform tasks in a hassle-free way.

Ruby is excellent for performing tasks such as data cleaning and data wrangling, along with other data pre-processing tasks. However, it doesn’t feature as many machine learning libraries as Python. This gives Python the edge when it comes to data science and machine learning.

Python also enables developers to roll out programs and get prototypes running, making the development process much faster. Once a project is on its way to becoming an analytical tool or application, it can be ported to more sophisticated languages such as Java or C, if necessary.

Newer data scientists gravitate toward Python because of its ease of use, which makes it accessible.

Why Python is Ideal for Data Science?

Data science involves extrapolating useful information from massive stores of statistics, registers, and data. These data are usually unsorted and difficult to correlate with any meaningful accuracy. Machine learning can make connections between disparate datasets but requires serious computational sophistry and power.

Python fills this need by being a general-purpose programming language. It allows you to create CSV output for easy data reading in a spreadsheet. Alternatively, more complicated file outputs that can be ingested by machine learning clusters for computation.

2

Consider the Following Example:

Weather forecasts rely on past readings from a century’s worth of weather records. Machine learning can help make more accurate predictive models based on past weather events. Python can do this because it is lightweight and efficient at executing code, but it is also multi-functional. Also, Python can support object-orientated and functional styles, meaning it can find an application anywhere.

There are now over 70,000 libraries in the Python Package Index, and that number continues to grow. As previously mentioned, Python offers many libraries geared toward data science. A simple Google search reveals plenty of Top 10 Python libraries for data science lists. Arguably, the most popular data analysis library is an open-source library called pandas. It is a high-performance set of applications that make data analysis in Python a much simpler task.

No matter what data scientists are looking to do with Python, be it predictive causal analytics or prescriptive analytics, Python has the toolset to perform a variety of powerful functions. It’s no wonder why data scientists embrace Python.

If you are interested in Python Certification Training in Delhi, drop by DexLab Analytics. With a team of expert consultants, we provide state-of-the-art Machine Learning Using Python training courses for aspiring candidates. Check out our course itinerary for more information.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Summer Internship/Training 101

Summer Internship/Training 101

Hard Fact: Nowadays, all major organizations seek candidates who are technically sound, knowledgeable and creative. They don’t prefer spending time and money on employee training.  Thus, fresh college graduates face a tricky situation.

Summer internship is a quick solution for them. Besides guaranteeing a valuable experience to the fresh graduates, internship helps them secure a quick job. However, the question is what exactly is a summer internship program and how does it help bag the best job in town?

What Is a Summer Internship?

Summer internships are mostly industrial-level training programs for students who are interested in core technical industry domain. Such internships offer students hands-on learning experience while letting them gain glimpses of the real world – following a practical approach. Put simply, summer trainings enhance skills, sharpen theoretical knowledge and are a great way to pursue a flourishing career. In most cases, the candidates are hired by the companies in which they are interning.

The duration of such internships is mostly between eight to twelve weeks following the college semesters. Mostly, they start from May or June and proceeds through August. So, technically, this is the time for summer internships and at DexLab Analytics, we offer industry-relevant certification courses that break open a gamut of job opportunities. Also, such accredited certifications add value to your CV. They help build powerful CVs.

If you are a college student and from Delhi, NCR, drop by DexLab Analytics! Browse through our business analytics, risk analytics, machine learning and data science course sections. Summer internships are your key to success. Hurry now!

Deep Learning and AI using Python

Why Is It Important?

Summers are crucial. If you are college-goer, you will understand that summertime is the most opportune time to explore diverse career interests without being bogged down by homework or classroom assignments.

Day by day, summer internships are becoming popular. Not only do they expose aspiring candidates to the nuances of the big bad world but also hone their communication skills, create great resumes and make them super confident. Building confidence is extremely important. If you want to survive in this competitive industry, you have to present a confident version of you. Summer training programs are great in this respect. Plus, they add value to your resume. A good internship will help you get noticed by the prospective employers. Always, try to add references; however, ask permission from your supervisors before including their names as references in your resume.

Moreover, summer training gives you the scope to experiment and explore options. Suppose, you are pursuing Marketing Major and bagged an internship in the same, but you are not happy with it. Maybe, marketing is not your thing. No worries! Complete your internship and move on.  

On the other hand, let’s say you are very happy with your selected internship and want to do something in the respective field! Finish the internship, wait for some time and then try for recruitment in the same company where you interned or explore possibilities in the same domain.

2

It’s no wonder that summer internships open a roadway of opportunities. The technical aptitude and in-demand skills learned during the training help you accomplish your desired goal in life.

For more advice or expert guide, follow DexLab Analytics.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

AI-Related Tech Jargons You Need To Learn Right Now

AI-Related Tech Jargons You Need To Learn Right Now

As artificial intelligence gains momentum and becomes more intricate in nature, technological jargons may turn unfamiliar to you. Evolving technologies give birth to a smorgasbord of new terminologies. In this article, we have tried to compile a few of such important terms that are related to AI. Learn, assimilate and flaunt them in your next meeting.

Artificial Neuron Networks – Not just an algorithm, Artificial Neuron Networks is a framework containing different machine learning algorithms that work together and analyzes complex data inputs.

Backpropagation – It refers to a process in artificial neural networks used to discipline deep neural networks. It is widely used to calculate a gradient that is required in calculating weights found across the network.

2

Bayesian Programming – Revolving around the Bayes’ Theorem, Bayesian Programming declares the probability of something happening in the future based on past conditions relating to the event.

Analogical Reasoning – Generally, the term analogical indicates non-digital data but when in terms of AI, Analogical Reasoning is the method of drawing conclusions studying the past outcomes. It’s quite similar to stock markets.

Data Mining – It refers to the process of identifying patterns from fairly large data sets with the help statistics, machine learning and database systems in combination.

Decision Tree LearningUsing a decision tree, you can move seamlessly from observing an item to drawing conclusions about the item’s target value. The decision tree is represented as a predictive model, the observation as the branches and the conclusion as the leaves.  

Behavior Informatics (BI) – It is of extreme importance as it helps obtain behavior intelligence and insights.

Case-based Reasoning (CBR) – Generally speaking, it defines the process of solving newer challenges based on solutions that worked for similar past issues.

Feature Extraction – In machine learning, image processing and pattern recognition plays a dominant role. Feature Extraction begins from a preliminary set of measured data and ends up building derived values that intend to be non-redundant and informative – leading to improved subsequent learning and even better human interpretations.

Forward Chaining – Also known as forward reasoning, Forward Chaining is one of two main methods of reasoning while leveraging an inference engine. It is a widely popular implementation strategy best suited for business and production rule systems. Backward Chaining is the exact opposite of Forwarding Chaining.

Genetic Algorithm (GA) – Inspired by the method of natural selection, Genetic Algorithm (GA) is mainly used to devise advanced solutions to optimization and search challenges. It works by depending on bio-inspired operators like crossover, mutation and selection.

Pattern Recognition – Largely dependent on machine learning and artificial intelligence, Pattern Recognition also involves applications, such as Knowledge Discovery in Databases (KDD) and Data Mining.

Reinforcement Learning (RL) – Next to Supervised Learning and Unsupervised Learning, Reinforcement Learning is another machine learning paradigms. It’s reckoned as a subset of ML that deals with how software experts should take actions in circumstances so as to maximize notions of cumulative reward.

Looking for artificial intelligence certification in Delhi NCR? DexLab Analytics is a premier big data training institute that offers in-demand skill training courses to interested candidates. For more information, drop by our official website.

The article first appeared on— www.analyticsindiamag.com/25-ai-terminologies-jargons-you-must-assimilate-to-sound-like-a-pro

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more