dvanced Analytics and Data Science Archives - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Want to Grow Quickly as a Data Scientist? Check Out 6 Ways

Want to Grow Quickly as a Data Scientist? Check Out 6 Ways

With the raging popularity of Data Science, only a few would be as unambitious as not choosing it as their field of work. Not only does Data Science open up a path long and promising for learning and attaining mastery but it also lets you get into the spotlight quicker than ever.

Most importantly, with the rising trend of Data Science, you can also shoot your career up.

Opting for Data Science, you can either be an employee in any of the distinguished IT sectors or you might also serve as a trainer, with your name all over the community.

But, as with all the other trades, marketing is important even when you seek for grounding your career in Data Science. But don’t worry because here we will give you some hacks to market yourself as a Data Scientist and grow as fast as feasible.

2

Knowing the Inside Out of the Domain

Ensure that you have a deep knowledge of Data Science before starting to market yourself as a Data Scientist. This is because as more and more people are getting trained in Data Science and starting to pave their career in the same field, none but they with a steadfast knowledge would thrive. Furthermore, in this digital career, you shall also pledge to be always updated and Data Science Courses in Gurgaon can give you the edge.

So, it would prove to be indispensable if you invest a considerable amount of time to learn, on hands-on-experience, leading to chiselling your knowledge and skillset.

Delve into Social Media

When it comes to marketing, you shall never disregard Social Media. In fact, that is the platform which you must first target. Facebook, Twitter and LinkedIn is the trio that you must first address.

Navigate to your Social Media accounts as frequently as you can. There, try to make friends with the people of the same profession, interact with them, discuss various problems and highlight your feats.

Value your Content

As in marketing, the common phrase goes “Content is King”, the validity of this saying is never to be tested.

Like your friends from Media, Content Marketing and Digital Marketing, there is no alternative to create your content and build your own trust.

Note – Bad content and plagiarism are a strict no-no.

Speak Often

Data Science is a relatively new stream, meetings, conferences, discussions are happening almost all the time around the world. Hence, keep yourself aware of these events and try to participate in them both as a speaker as well as a diligent and inquisitive audience.

Grow this habit and you will be amazed at assessing the popularity of yourself incredibly fast.

Be Inclined to Help

Knowledge is always ought to be shared. If you discover that you have an irrefutable knowledge of something and someone is asking for help in your domain of expertise, then extend your helping hands to them. This way you will simply be recognised all the way more.

Deep Learning and AI using Python

Hackathons

For computer geeks and coders, Hackathons speak volumes. You should also try and participate in more such hackathons which are widely occurring. This will not only help you test your knowledge and understanding but will push you further and even help you extend the contacts in your professional field.

The points that we have highlighted here should surely help you be more marketable as a Data Scientist. So, keep these in mind and watch your career take a flight!

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

5 Full-Stack Data Science Projects You Need to Add to Your Resume Now

5 Full-Stack Data Science Projects You Need to Add to Your Resume Now

Small or big, most of the organizations seek aspiring data scientists. The reason being this new breed of data experts helps them stay ahead of the curve and churns out industry-relevant insights.

It hardly matters if you are a fresher or a college dropout, with the right skill-set and basic understanding of nuanced concepts of machine learning, you are good to go and pursue a lucrative career in data science with a decent pay scale.

However, whenever a company hires a new data scientist, the former expects that the candidate had some prior work experience or at least have been a part in a few data science-related projects. Projects are the gateway to hone your skills and expertise in any realm.  In such projects, a budding data scientist not only learns how to develop a successful machine learning model but also solves an array of critical tasks, which needs to be fulfilled single-handedly. The tasks include preparing a problem sheet, crafting a suitable solution to the problem, collect and clean data and finally evaluate the quality of the model.

Below, we have charted down top 5 full-stack data science projects that will boost your efforts of preparing an interesting resume.

Deep Learning and AI using Python

Face Detection

In the last decade, face detection gained prominence and popularity across myriad industry domains. From smartphones to digitally unlocking your house door, this robust technology is being used at homes, offices and everywhere.

Project: Real-Time Face Recognition

Tools: OpenCV, Python

Algorithms: Convolution Neural Network and other facial detection algorithms

Spam Detection

Today, the internet plays a crucial role in our lives. Nevertheless, sharing information across the internet is no mean feat. Communication systems, such as emails, at times, contain spam, which results in decreased employee productivity and needs to be avoided.

Project: Spam Classification

Tools: Python, Matplotlib

Algorithm: NLTK

Sentiment Analysis

If you are from the Natural Language Processing and Machine Learning domain, sentiment analysis must have been the hot-trend topic. All kinds of organizations use this technology to understand customer behaviors and frame strategies. It works by combining NLP and suave machine learning technologies.

Project: Twitter Sentiment Analysis

Tools: NLTK, Python

Algorithms: Sentiment Analysis 

Time Series Prediction

Making predictions regarding the future is known as extrapolation in the classical handling of time series data. Modern researchers, however, prefer to call it time series forecasting. It is a revolutionary phenomenon of taking models perfect on historical data and using them for future prediction of observations.

Project: Web Traffic Time Series Forecasting

Tools: GCP

Algorithms: Long short-term memory (LSTM), Recurrent Neural Networks (RNN) and ARIMA-based techniques

2

Recommender Systems

Bigwigs, such as Netflix, Pandora, Amazon and LinkedIn rely on recommender systems. The latter helps users find out new and relevant content and items. In simple terms, recommender systems are algorithms that suggest users meaningful items based on his preferences and requirements.

Project: Youtube Video Recommendation System

Tools: Python, sklearn

Algorithms: Deep Neural Networks, classification algorithms

If you are a budding data scientist, follow DexLab Analytics. We are a premier data science training platform specialized in a wide array of in-demand skill training courses. For more information on data science courses in Gurgaon, feel free to drop by our website today.

 

The blog has been sourced fromwww.analyticsindiamag.com/5-simple-full-stack-data-science-projects-to-put-on-your-resume

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Bringing Back Science into “Data Science”

Bringing Back Science into “Data Science”

Far from the conventional science disciplines, like physics or mathematics, Data Science is a budding discipline: which means there are no proper definition to explain what data science is and what role it does play.

Nevertheless, the internet is full of working definitions of data science. As per Wikipedia, Data Science is

(an) interdisciplinary field about processes and systems to extract knowledge or insights from data in various forms, either structured or unstructured, which is a continuation of some of the data analysis fields such as statistics, data mining, and predictive analytics.

To that note, a very important aspect is left behind in this explanation: Data Science is a science first, which means a proper scientific method should be devised to tackle different data science practices. By scientific method, we mean a healthy process of asking questions, collecting information, framing hypothesis and analyzing the results to draw conclusions thereafter.

Go below, the process breakup is as follows..

Ask questions

Start by asking what is the business problem? How to leverage maximum gains? What ways to implement to increase return on investment? The finance industry takes help from data science for myriad reasons. One of the most striking reasons is to enhance the return on investment out of marketing campaigns.

What Sets Apart Data Science from Big Data and Data Analytics – @Dexlabanalytics.

Collect data

A predictive modeling analyst has access to vast data resources, which eventually makes the entire research and gathering data process much less complex. However, it is only in theory, because rarely data is stored in the desired format an analyst wants, making his job easier.

Data Science – then and now! – @Dexlabanalytics.

Devise a hypothesis

After getting to the heart and soul of the problem, we start to develop hypotheses. For example, you believe your firm’s profit is leveraged by an optimistic customer reaction towards your product quality and positive advertising capabilities of your firm. Through this example, we explained a nomological network, where you are in a position to infer casualties and correlations. While dealing in Data Science, assessing customer perception is very crucial, and so is the analysis of financial datasets.

Data Science: Is It the Right Answer? – @Dexlabanalytics.

Testing and experiments

Formulating a hypothesis is not enough; a predictive modeler relies on statistical modeling techniques to forecast the future in a probabilistic manner. Keep a note, this doesn’t result in indicating “X will occur”, instead it refers “Given Y, the probability of X occurring is 75%.”

Any proper experiment includes control groups and test, meaning a modeler when preparing a predictive model should divide the dataset so as to ensure availability of few data for testing predictive equation.

Now, if we talk about marketing – consider logistic regression. It offers a probability whether a binary event of interest will take place or not.

Enroll in an R Predictive Modelling Certification program to go through the mechanics of this problem. Reach us at DexLab Analytics.

Tracing Success in the New Age of Data Science – @Dexlabanalytics.

Evaluate results and infer conclusions

Now is the time to make a decision: do you prefer the quantitative approach? As social media is totally unstructured, the qualitative approach needs to be implemented using Natural Language Processing, which can be a tad difficult. Now, how about making a longitudinal analysis, while transforming data into time series? Do all these questions rake your mind? Yes? Then you are on the right track.

Keep Pace with Automation: Emerging Data Science Jobs in India – @Dexlabanalytics.

Reporting of results

This is the final battle scene for all predictive modelers. It calls for all the documents, based on which a modeler made his decision during the development process. All the assumptions taken have to be identified and highlighted beside the results.

And with it comes the end of our Science in Data Science process!

For more interesting updates and blogs, follow us at DexLab Analytics. Opt for our impressive Data Science Courses in gurgaon and lead the road of success!

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more