Deep learning Training Institutes Archives - Page 3 of 3 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

4 FAQs on Deep Learning

4 FAQs on Deep Learning

AI is revolutionizing the world. And Deep Learning is right in the heart of it. Yes, Deep Learning is a paradigm of machine learning, where algorithms are developed in a manner resembling the structure and function of human brain, and the entire phenomenon is called Artificial Neural Network.

From Facebook’s research to Netflix’s movie recommendations to DeepMind’s iconic algorithms, Deep Learning has indeed come a long way. Legendary innovations, awe-inspiring breakthroughs and latest technologies added to the flight. So, now that it became one of the hottest trends in the IT industry, you might be wondering what exactly in this nuanced AI concept… or how much does it includes studying mathematics and statistics… or how much deep is Deep Learning…

To answer all your questions and introduce you to the intricacies of such an in-demand IT skill, we’re here – this blog should help you in your quest for knowledge on Deep Learning.

Let’s get started!

What is Deep Learning and what makes it so popular?

Deep Learning is a significant part of AI that involves imitating the way a human brain functions, while learning some kind of knowledge. Put simply, this new branch of science has a lot to do with automating predictive analytics.

The superiority of human brain is unbeatable; this is why Deep Learning models is considered to be the most versatile and self-efficient man-made models ever been created. Using such an eccentric model, deriving crucial information from a humongous amount of data is what makes Deep Learning so special, and of course popular.


What are some of its real-life applications?

  • Facebook and Google are translating text into various different languages, all at the same time.
  • Siri, Cortana, Alexa are effortless working towards simplifying speech recognition techniques – their voice commands have ignited a whole new world of possibilities for a machine.
  • Deep Learning is increasingly influencing impactful computer vision applications, including OCR (Optical Character Recognition) and real time language translation.
  • Snapchat and Instagram use facial feature detection – which involves a larger chunk of Deep Learning technology.
  • In the healthcare domain, detection of malignant cells has been possible because of this latest technology.

What are the prerequisites to get started with Deep Learning?

 Starting a career in this hottest field of science is not as difficult as it sounds to be. Deep Learning requires you to possess some knowledge on the following fields of study:

  • Mathematics
  • Statistics
  • Machine Learning
  • Basic skills for Coding

Which tools to possess to ace Deep Learning?

Hailing from the field of data science, I would always recommend Python certification course – because it is simple, robust, efficient, and has its own open source libraries and supports a large, active community of users. That being said, Python is a universal programming language; it can be used for development as well as implementation.

Besides Python, aspiring newbies are free to grasp top notch libraries, such as Keras. It simplifies the experimentation task and ensures access to the parameters that amplified the performance of similar models.

DexLab Analytics is a leading Python training institute in Delhi; if you are interested, you can browse through their course itinerary and make a well-informed decision.

The blog has been sourced from —

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Machine Learning and AI is Influencing Logistics, Supply Chain & Transportation Management

How Machine Learning and AI is Influencing Logistics, Supply Chain & Transportation Management

More than 65% of top transportation professionals agree that logistics and supply chain management is in the midst of a revolution – a period of incremental transformation. And, the most potent drivers of change are none other than machine learning and artificial intelligence.

Top notch companies are already found leveraging the tools of artificial intelligence and machine learning for fine-tuning its superior strategies, including warehouse location scouting and enhancing real-time decision-making. Though these advanced technologies nurture large chunks of data, the logistic industry has for long been hoarding piles of data. Today, the difference lies in the gargantuan volume of data, as well as the existence of powerful algorithms to inspect, evaluate and trigger the process of understanding and its respective action.

Below, we will understand how AI streamlines logistics and transportation functionalities, influencing profitability and client satisfaction. Day by day, more companies are fusing Artificial Intelligence with Internet of Things to administer logistics, inventory and suppliers, backed by a certain amount of precision and acumen. Let’s delve deeper!

Predictive Maintenance

AI-powered Sensors monitor operational conditions of machines; thus can detect discrepancies even before the scheduled machine servicing based on manufacturer’s recommendation. Then they alert the technicians prior to any potential equipment failure or service disorientation. Thanks to real-time wear and tear!

For Machine Learning training course, drop by DexLab Analytics

Shipping Efficiency

Powerful algorithms are constantly used to tackle last minute developments, including picking the best alternate port in case the main port is non-operational or something like that, planning beforehand if the main carrier cancels a booking and even gauging times-of arrival.

Machine Learning capabilities are also put to use for estimating the influence of extreme weather conditions on shipping schedules. Location specific weather forecasts are integral to calculate potential delays in shipments.

Warehouse Management

Machine learning has the ability to determine inventory and dictate patterns. It ascertains the items which are selling and are to be restocked on a priority basis, and items which need sound remarketing strategy.

Voice recognition is a key tool that uses AI to ensure efficiency and accuracy through successful Warehouse Management System – a robotic voice coming out of a headset says which item to pick and from where, enabling a fast process of warehousing and dispatching of goods.

Once, the worker founds the item, he/she reads out the number labeled on them, which the system then tallies with its own processed data list through speech recognition and then confirms the picked item for the next step.  The more the system is put to use, the more trained it gets. Over time, the system learns the workers’ tone and speech patterns, resulting into better efficiency and faster work process.


 A majority of shipping companies are competing with each other to have the most robust and efficient delivery service, because delivery is the final leg of a logistic journey. And it’s vitally important – predictive analytics is used to constantly maneuver driver routes, and plan and re-plan delivery schedules.

DHL invests on semi-autonomous vehicles that drive independently without human intervention carrying deliverables to people across urban communities. Another company, Starship Technologies, founded by the co-founders of Skype employs six-wheeled robots across London packed with hi-tech cameras and GPS. The robots are stuffed with cutting edge technology, but are controlled by humans so that they can take charge as and when required minimizing any negative outcomes.

Overall, artificial intelligence and machine learning has started augmenting human role for efficient logistics and transportation management. With all the recent developments in the technology sphere, it’s only a matter of time until AI becomes a necessary management part of supply chain.

Data Science Machine Learning Certification

And of course all this excites us to the core! If you are excited too, then please check out our brand new Machine Learning Using Python training courses. We combine theoretical knowledge merged with practical expertise to ensure students get nothing but the best!

The blog has been sourced from:


Deep Learning: A Comprehensive Study

Deep Learning: A Comprehensive Study

Deep Learning is a subdivision of machine learning, under the category of artificial intelligence. It’s based on a fixed set of algorithms that strives to model advanced level abstractions in data. In a simple model, you would be having two sets of neurons, where if the input layer receives any input, it transmits a revamped version of input to the next layer. However, in a deep network, there exists a web of many layers between input and output, compelling the algorithm to rely on multiple processing layers, made of numerous layers and non-linear transformations.

No wonder, Deep Learning has triggered a revolution in the machine learning realm. Interesting works are being carried on in this field. Innovative technology is modifying speech recognition, object detection, visual object recognition and other sectors, like genomics and drug discovery. And, yes, we are excited about all the new good things that’s happening around!!

For more detailed analysis, scroll below:

About Deep Learning Architecture

  • Generative deep architectures are created to characterize high-order correlation attributes of visible data for all sorts of pattern analysis as well as synthetic purposes.
  • Discriminative deep architectures are specialized in offering discriminative power for pattern classification, mostly by showcasing posterior distribution of classes subject to visible data.
  • Hybrid deep architectures are designed for discrimination but are aided with results of generative architectures through better optimization as well as regularization.

A Few Applications of Deep Learning


Colorization of BW Images

Deep learning has the ability to recreate an image with the addition of color. The cutting edge technology uses the objects and the entire context within a picture for coloring the whole image, quite similar to a human approach. For this, extensive supervised layers and convulational neural network have to be put to use, of course.

Generative Model Chatbots

They are in hype. A sequence-to-sequence model is widely used to design chatbots which are capable of generating their own answer when trained on a wide set of real-live interactive datasets.

Machine Translations

Text translation is very easy to perform without following any proper sequence, allowing algorithms to ace dependencies between words and plotting to a new language.

Automatic Game Playing

Here, a model is trained to play a computer game formulated on the pixels on the screen. The task is fairly challenging and is one of the most fascinating domains of deep reinforcement models, Deep Mind.

Automatic Handwriting Generation

Here, you have to generate a new handwriting for a particular word or phrase using this technology. The handwritting is given as a sequence of coordinates written by a pen once the samples are done.

As parting thoughts, Deep Learning is still in a nascent stage in India. But, its diverse uses and capabilities will surely put it in the industry frontline some day soon. So, if you are looking for good deep learning training courses in Gurgaon, DexLab Analytics offers some out of the box kind of learning experience. Do check out their deep learning certification courses, they are excellent!


The blog has been sourced from —

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more