Credit Risk Management Certification Course Archives - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

How Credit Unions Can Capitalize on Data through Enterprise Integration of Data Analytics

credit risk analysis

To get valuable insights from the enormous quantity of data generated, credit unions need to move towards enterprise integration of data. This is a company-wide data democratization process that helps all departments within the credit union to manage and analyze their data. It allows each team member easy-access and proper utilization of relevant data.

However, awareness about the advantages of enterprise-wide data analytics isn’t sufficient for credit unions to deploy this system. Here is a three step guide to help credit unions get smarter in data handling.

Improve the quality of data

A robust and functional customer data set is of foremost importance. Unorganized data will hinder forming correct opinions about customer behavior. The following steps will ensure that relevant data enters the business analytics tools.

  • Integration of various analytics activity- Instead of operating separate analytics software for digital marketing, credit risk analytics, fraud detection and other financial activities, it is better to have a centralized system which integrates these activities. It is helpful for gathering cross-operational cognizance.
  • Experienced analytics vendors should be chosen- Vendors with experience can access a wide range of data. Hence, they can deliver information that is more valuable. They also provide pre-existing integrations.
  • Consider unconventional sources of data- Unstructured data from unconventional sources like social media and third-parties should be valued as it will prove useful in the future.
  • Continuous data cleansing that evolves with time- Clean data is essential for providing correct data. The data should be organized, error-free and formatted.

Data structure customized for credit unions

The business analytics tools for credit unions should perform the following analyses:

  • Analyzing the growth and fall in customers depending on their age, location, branch, products used, etc.
  • Measure the profit through the count of balances
  • Analyze the Performances of the staffs and members in a particular department or branch
  • Sales ratios reporting
  • Age distribution of account holders in a particular geographic location.
  • Perform trend analysis as and when required
  • Analyze satisfaction levels of members
  • Keep track of the transactions performed by members
  • Track the inquires made at call centers and online banking portals
  • Analyze the behavior of self-serve vs. non-self serve users based on different demographics
  • Determine the different types of accounts being opened and figure out the source responsible for the highest transactions.

User-friendly interfaces for manipulating data

Important decisions like growing revenue, mitigating risks and improving customer experience should be based on insights drawn using analytics tools. Hence, accessing the data should be a simple process. These following user-interface features will help make data user-friendly.

Dashboards- Dashboards makes data comprehensible even for non-techies as it makes data visually-pleasing. It provides at-a glance view of the key metrics, like lead generation rates and profitability sliced using demographics. Different datasets can be viewed in one place.

Scorecards- A scorecard is a type of report that compares a person’s performance against his goals. It measures success based on Key Performance Indicators (KPIs) and aids in keeping members accountable.

Automated reports- Primary stakeholders should be provided automated reports via mails on a daily basis so that they have access to all the relevant information.

Data analytics should encompass all departments of a credit union. This will help drawing better insights and improve KPI tracking. Thus, the overall performance of the credit union will become better and more efficient with time.

Technologies that help organizations draw valuable insights from their data are becoming very popular. To know more about these technologies follow Dexlab Analytics- a premier institute providing business analyst training courses in Gurgaon and do take a look at their credit risk modeling training course.

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

DexLab Analytics is Heading a Training Session on CRM Using SAS for Wells Fargo & Company, US

credit risk modelling

We are happy to announce that we have struck gold! Oops, not gold literally, but we are conducting an exhaustive 3-month long training program for the skilled professionals from Wells Fargo & Company, US. It’s a huge opportunity for us, as they have chosen us, out of our tailing contemporaries and hope we do fulfill their expectations!

Wells Fargo & Company is a top notch US MNC in the field of financial service providers. Though headquartered in San Francisco, California and they have several branches throughout the country and abroad. They even have subsidiaries in India, which are functioning well alike. Currently, it is the second-largest bank in home mortgage servicing, deposits and debit cards in the US mainland. Their skilled professionals are adept enough to address complicated finance-induced issues, but they need to be well-trained on tackling Credit Risk Management challenges, as CRM is now the need of the hour.

Our consultants are focused on imparting much in-demand skills on Credit Risk Modeling using SAS to the professionals for the next three months. The total course duration is of 96 hours and the sessions are being conducted online.

 

 

 

 

In this context, the CEO of DexLab Analytics said, “This training session is another milestone for us. At DexLab Analytics, being associated with such a global brand name, Wells Fargo is a matter of great honor and pride, which I share with all my team members. Thanks to their hard work and dedication, we today possess the ability and opportunity to conduct exhaustive training program on Credit Risk Management using SAS for the consultants working at Wells Fargo & Company.”

“The training session starts from today, and will last for three-months. The total session will span over 96 hours. Reinforcing our competitive advantage in the process of development and condoning data analytics skills amongst the data-friendly communities across the globe, we are conducting the entire 3-month session online,” he further added.

Credit Risk Management is crucial to survive in this competitive world. Businesses seek this comprehensive tool to measure risk and formulate the best strategy to be executed in future. Under the umbrella term CRM, Credit Risk Modeling is a robust framework suitable to measure risk associated with traditional crediting products, like credit score, financial letters of credit and etc. Excessive numbers of bad loans are plaguing the economy far and large, and in such situations, Credit Risk Modelling using SAS is the most coveted financial tool to possess to survive in these competitive times.

In the wake of this, DexLab Analytics is all geared up to train the Wells Fargo professionals in the in-demand skill of CRM using SAS to better manage financial and risk related challenges.

To read our Press Release, click:

DexLab Analytics is organizing a Training Program on CRM Using SAS for Wells Fargo Professionals

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Sources Of Banking Risks: Credit, Market And Operational Risks

Sources Of Banking Risks: Credit, Market And Operational Risks

Banking risk refers to the future uncertainty which creates stochasticity in the cash flow from receivables of outstanding balances. Banking Risks can be described in the Vonn-Neumann-Morgenstern (VNM) framework of Money lotteries. In this framework, the set of outcomes are assumed to be continuous and monetary in nature, and the lottery is a list of probabilities associated with the continuous outcomes. When applied to the banking framework, the cash flows (the set of outcomes) are assumed to be continuous and stochastic in nature. A theoretical model for the risk is represented in the framework below:


Data Science Machine Learning Certification

There are three broad sources from which banking risks originate: 1. Credit Risk 2. Market Risk 3. Operational Risk.

CREDIT RISK:

Credit Risk arises when the borrower defaults to honour the repayment commitments on their debts. Such a risk arises as a result of adverse selection (screening) of applicants at the stage of acquisitions or due to a change in the financial capabilities of the borrower over the process of repayment. A loan will default if the borrower’s assets (A) at maturity (T) falls below the contractual value of the obligations payable (B) (Vasicek,1991). Let A_i be the asset of the i-th borrower, which is described by the process:

MARKET RISK:

Market Risk includes the risk that arises for banks from fluctuation of the market variables like: Asset Prices, Price levels, Unemployment rate etc. This risk arises from both on-balance sheet as well as off-balance sheet items. This risk includes risk arising from macroeconomic factors such as sharp decline in asset prices and adverse stock market movements. Recessions and sudden adverse demand and supply shock also affect the delinquency rates of the borrowers. Market Risk includes a whole family of risk which includes: stock market risks, counterparty default risk, interest rate risk, liquidity risk, price level movements etc.

OPERATIONAL RISK:

Operational Risk arises from the operational inefficiencies of the human resources and business processes of an organisation. Operational risk includes Fraud risks, bankruptcy risks, risks arising from cyber hacks etc. These risks are uncorrelated across the industries and is very organisation specific. However, Operational risk excludes strategy risk and reputation risk.

This blog is the continuation of the first blog, which was on the topic – The Basics of the Banking Business and Lending Risks. To read the blog, click here ― www.dexlabanalytics.com/blog/the-basics-of-the-banking-business-and-lending-risks

Stay glued to our site for further details about banking structure and risk modelling. DexLab Analytics offers a unique module on credit risk analysis training in Bangalore.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more