Big data training in Gurgaon Archives - Page 5 of 7 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Top 4 Best Big Data Jobs to Look For in 2017

Data is now produced at an incredible rate – right from online shopping to browsing through social media platforms to navigating through GPS-enabled smartphones, data is being accessed everywhere. Big Data professionals now fathom the enormous business opportunities by perusing petabytes of data, which was impossible to grasp previously. Organizations are taking the best advantage of this situation and rushing to make the best of these revelations about.

 
Top-4-Best-Big-Data-Jobs-to-Look-For-in-2017
 

Big data courses are now available in India. DexLab Analytics is the one providing such advanced Big Data Hadoop certification in Gurgaon.

Continue reading “Top 4 Best Big Data Jobs to Look For in 2017”

Our Perception Must Include Data-Ception

Our Perception Must Include Data-Ception

Considering the complex competitive global environment, the world business today is witnessing a paradigm shift from mere data storage to data mining and other subsequent activities.

Thus, from a managerial perspective it is of prime importance to develop a psyche, which can interpret the collection of data. This psyche cannot be theoretically learnt from books, as it requires a knack to make data talk. Data is no more evaluated independently. Today, a cross-domain relationship between data exists, which on analysis depicts patterns, responsible enough to do wonders for the organization.

The question is how can we connect the dots? Following the recent trends, developers are grabbing every opportunity to break a huge chunk of data into meaningful relevant information. From the standpoint of technical professionals, along with an analytical mindset, they need to get hands on experience on the technological perspective to understand the real significance of data evaluation.

 Read Also : DexLab Analytics – Training the Future to be Big Data Analytics Fluent

The data not only aligns with the internal activity of the business but also is an integral part for consumer servicing. There is an intense need to study the needs of consumer and every decision he makes, which broadens the outlook of a business on how he/she is using their product. What are the expectations of the customer from an existing product? What more my customer needs? The answers to these questions cannot always be mapped quantitatively but a qualitative approach towards data is one of the key aspects of data analytics.

In this digital era, slightest technological ripples are going to reshuffle the whole industry scenario. And, that is why the omnipresence of data will aid businesses in setting new benchmarks in consumer and market findings. Growing pace of social media would open a Pandora’s Box for companies, who have their right audience in this particular domain.

The emergence of IOT, which primarily thrives on data, will cause disruption in the current business orientation. The data producing sensor architecture directly connected to the company can help the business to be fast and robust, which is the need of an hour. In addition, this analytics might influence mid-size distribution largely.

Simple example of this model: Sensors attached to tyres could sense data, and alert a tyre manufacturer about the usage of a consumer, which will help in servicing their customer at the right moment.

Thus, on an individualistic note there is need to develop a data analytical mindset and include data-ception in perception.

This blog has been contributed by Team Frontrunners, comprising members Ria Shah, Dishank Palan, Sanjay Sonwani from Welingkar College.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Future Is In Our Face! How Facial Recognition Will Change Marketing Innovation

big data facial recognition

Most us are taking a lot of technological marvels around us for granted these days. We have casually taken note of the things like how our smartphones now help us assign photos of people or organize them, or how Facebook usually knows the right people’s faces to tag. However, it has only happened recently, which most people have not realized, that this technology is not so much of a “cool trick” and will actually shape the way people are conducting their business endeavours.

These latest technological developments are already being tested out in several different industries and for a lot of different purposes. Like for instance, security scanners at the airports are now making use of this technology to allow the e-passport holders clear their customs faster. And with the further development in facial recognition technology, the border and customs officers will be able to recognize and weed out travellers with fake passports better.

Moreover, the facial recognition technology is now being implemented in several government facilities and businesses that require a higher level of security clearance. With the use of this technology, security professionals may easily run the real-time criminal searches with the use of CCTV footage.

2

Now if you are like us, and constantly purchase things online then you must be aware of the fact that your choice and even your face must be with them in their database as a part of your customer profile. But these days, major retailers in physical stores are using intelligent data and trying to up their game to compete with the shopping sites. This will help them target customers faster and help them provide offers specifically tailored to these people based on their buying preferences just like at online stores.

We have provided Big Data training for Snapdeal, so why not target your customers better with a Big Data certification?

Furthermore, such a technology can also be used to catch shoplifters red handed in the act, a system that Walmart has actually implemented in place in many of its stores

When your face as a customer shows up for the first time on their screens they will start to build a profile of yours, which will be based on your in-store actions. Like for instance, the amount of time one spends in a certain area, the path around the store and items that you choose to buy.

Even the entertainment industry, like theme parks, casinos, etc have already caught up in the use of this technology to not only target marketing activities, but also to keep an eye on suspicious activities. And when it comes to greater applications for facial recognition, like in the industries of banking and fintech we are only just scratching the surface.

Several industry insiders have agreed that facial recognition will allow marketers to effectively know their customers much better, the visitor photos stored may work as the cookies for referencing for identification and for storage of users as well. So, this technology can soon eliminate loyalty cards as an obsolete art.

The moment one walks into a store the staff will already have an idea of what they bought there when visited the store the last time, and thanks to the camera footage with the facial recognition technology, will provide the retailers with an advantage to keep up their pace with ecommerce giants like Amazon, Flipkart, Alibaba etc.

One may also use facial recognition to retarget their customers with several personal offers. Like you decide to buy a certain product at a certain store, but then leave as it is slightly over budget for you. Soon you may find an internet ad or a personal message about a good discount on that product from that retailer offering you a good deal. But for all this to take proper shape, there must be a strong backup strategy, which certainly plays a strong role when it comes to way people collect, use and store data of any kind.

Thus, this will begin a whole new chapter to targeted campaigns be it online or offline or both, through the leveraging of Big Data for even a single customer.

Big Data courses from the industry leaders now just a click away, with DexLab Analytics.

Big Data Hadoop training from Dexlab Analytics

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Big Data Analytics and its Impact on Manufacturing Sector

Big Data Analytics and its Impact on Manufacturing Sector

It is no new news that the Big Data and software analytics have had a huge impact on the modern industries. There are several industry disruptors that have surfaced in the past few years and totally changed the lives of all connected humans. Like Google, Tesla and Uber! These are the companies that have used the long list of benefits presented to us by Big Data to expand and infiltrate newer markets, they have helped themselves improve customer relations and enhance their supply chains in multiple segments of market.

As per the latest IDC Research projects the sale of Big Data and analytics services will rise to USD 187 billion in 2019. This will be a huge leap from the USD 122 billion which was recorded in 2015. A major industry that stands to benefit greatly from this expansion which is the manufacturing industry, with the industry revenue projections ranging to USD 39 billion by 2019.

The industry of manufacturing has come a long way from the age of craft industries. But back then, the manufacturing process involved a slow and tedious production processes which only yielded limited amounts of products.

The effects of Big Data Analytics on the Manufacturing sector:

 Automated processes along with mechanization have resulted in a generation of large piles of data, which is, much more than what most manufacturing enterprises know what to do with them.

But such data can yield beneficial insights for the manufacturing units to improve their operations and increase their productivity. Here are a few notable ones:

 

The effects of Big Data Analytics on the Manufacturing sector:

Image Source: mckinsey.com

Savings in cost:

Big data analytics can really help transform the manufacturing process and revolutionize the way they are carried out. The obtained information can be used to reduce the cost of production and packaging during manufacturing. Moreover, companies which implement data analytics can also reduce the cost of transport, packaging along with warehousing. This is in turn can help inventory costs and return i huge savings.

Improvement in safety and quality:

A lot of manufacturing companies are now making use of computerised sensors during the production to sift through low quality products while on the assembly line. With the right software analytics enterprises can use the data generated from such sensors to improve the quality and safety of the products instead of simply throwing away the low quality products after the production.

Improvement in safety and quality:

Image Source: blogs-images.forbes.com

Tightening up the workforce efficiency:

They can also use this data to improve management and employee efficiency. Big data analytics can be used to study the error rates on the production floor and use that information to analyse specific regions where employees are good when they perform under pressure.

Moreover, data analytics may help to speed up the production process n the production floor. S will be especially useful for large firms, which work with large volumes of data.

Better collaboration:

A great advantage of having an IT based data collection and analysis infrastructure is improved information movement within the manufacturing organization. The synergy of flow of information within the management and engineering departments as well as in the quality control sector and between the machine operators and other departments of the company helps them work more efficiently.

The manufacturing industry is much more complex than any other industry, which have implemented the big data analytics. Companies must effectively time the implementation of this software so that there are no losses. And should also pay attention as to from where they can mine the data and the right analytics tools to use for producing feasible and actionable results.

 

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Big Data Analytics Is Helping To Curb Cancer For More Than 40 Years Now

The times now are such that we can name at least one of our friends, relatives or peers who have fought the dreadful battle with cancer. But luckily for us there are several people who along with their loved ones have not only fought this battle with courage but have triumphed to achieve sweet survival. But such glorious accomplishments would not have occurred if it were 40 years ago.

 
Big Data Analytics Is Helping To Curb Cancer For More Than 40 Years Now

 

As per the reports, adults who were diagnosed with cancer back in 1975 only had a lowly 50/50 chance of survival after five years of being diagnosed. But today the relative five year after rate of survival across all types of cancer is as close as 70 percent. And for better, the cancer survival rate during the same time frame for child cancer patients within five years of diagnosis has improved from the previously existing 62 percent to 81 percent, which is a steep rise. Continue reading “Big Data Analytics Is Helping To Curb Cancer For More Than 40 Years Now”

Big Data is the New Obsession of Small Business Owners

Big Data is the New Obsession of Small Business Owners

While this may seem somewhat counterintuitive, but instead of large organizations, it is actually small business owners and midsize companies who tend to be more inclined towards the applications of Big Data. They are also the first to adopt these latest technological innovations of which analytics is no exception – as these internet and data based insights are highly accessible and also affordable for SMBs.

As per the researchers in the fields of technology, the entry level capabilities in such fields like analytics has abruptly dropped which is why almost all types of industries from an array of sectors are engaging with them to enhance their competitiveness; and the wheels have already started to roll when it comes to increasing overall global competitiveness. Continue reading “Big Data is the New Obsession of Small Business Owners”

A few easy steps to be a SUCCESSFUL Data Scientist

A-few-easy-steps-to-be-a-successful-data-scientist (1)

Data science has soared high for the past few years now; sending the job market into turbo pace where organizations are opening up their C-suite positions for unicorns to take their mountainous heap of data and make sense of it all to generate the big bucks. And professionals from a variety of fields are now eyeing the attractive position of data analyst as a possible profitable career move.

We went about questioning the faculty at our premiere data science and excel dashboard training institute to know how one can emerge as a successful data scientist, in this fast expanding field. We wanted to take an objective position from a recruiter’s point of view and create a list of technical and non-technical skills which are essential to be deemed an asset employee in the field of data science.

Keep Pace with Automation: Emerging Data Science Jobs in India – @Dexlabanalytics.

A noteworthy point to be mentioned here is that every other organization will evaluate skills and knowledge in different tools with varying perspectives. Thus, this list in no way is an exhaustive one. But if a candidate has these songs then he/she will make a strong case in their favor as a potential data scientist.

The technical aspects:

Academia:

Most data scientists are highly educated professionals with more than 88 percent of them having a Master’s degree and 46 percent of them have a PhD degree. There are exceptions to these generalized figures but a strong educational background is necessary for aspiring data scientists to understand the complex subject of data science in depth. The field of data science can be seen in the middle of a Venn diagram with intersecting circles of subjects like Mathematics and Statistics 32%, Engineering 16% and Computer Science and Programming 19%.

Knowledge in applications like SAS and/or R Programming:

In depth knowledge in any one of the above tools is absolutely necessary for aspiring data scientists as these form the foundation of data analysis and predictive modeling. Different companies give preference to different analysis tools from R and SAS, a relatively new open source program that is also slowly being incorporated into companies is Hadoop.

2

For those from a computer science background:

  • Coding skills in Python – the most common coding language currently in use in Python. But some companies may also demand their data scientists to know Perl, C++, Java or C.
  • Understanding of Hadoop environment – not always an absolute necessity but can prove to be advantageous in most cases. Another strong selling point may be experience in Pig or Hive. Acquaintance with cloud based tools like Amazon S3 may also be advantageous.
  • Must have the ability to work with unstructured data with knowledge in NoSQL and must be proficient in executing complex queries in SQL.

Non-technical skills:

  • Impeccable communicational skills so that data personnel can translate their technical findings into non-technical inputs comprehensible by the non-techies like sales and marketing.
  • A strong understanding of the business or the industry the company operates in. leverage the company’s data to achieve its business objectives with strong business acumen.
  • Must have profound intellectual curiosity to filter out the problem areas and find solutions against the same.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Most Important Algorithms Every Data Scientist Must Know

Algorithms are now like the air we breathe; it has become an inevitable part of our daily lives and is also included in all types of businesses. Experts like Gartner has called this age as the algorithm business which is the key driving force that is overthrowing the traditional ways in which we do our business and manage operations.

The most important algorithms of machine learning

In fact the algorithm boom with uber diversification has reached a new high, so much so that now each function in a business has its own algorithm and one can buy their own from the algorithm marketplace. This was developed by algorithm developers at Algorithmia to save the precious time and money of business operators and other fellow developers and offers a plethora of more than 800 algorithms in the fields of machine learning, audio and visual processing and computer vision.

2

But we as data enthusiasts in the same field with an undying love for algorithm would like to suggest that not all the algorithms from the Algorithmia marketplace may be suitable for your needs. Business needs are highly subjective and environment based. And things as dynamic as algorithms can produce different types of results even in the slightly different situations. Also the use of algorithms depends on a number of factors on how they can be applied and what results one can expect from their application. The variables on which the application of algorithms depends are as follows: type and volume of the data sets, the function the algorithm will be applied for and the industry in which the algorithm will be applied.

Hence, not always reaching for the easy option of buying a readymade algorithm off the shelf and simply tweaking it to fit into your model may not always be the most cost-effective or time saving way to go. So, it is highly recommended for data scientists to educate themselves well on the most important algorithms that must be known by them, as well as the back of their hands. A data scientist must also know how each algorithm is developed and also which purpose calls for which algorithm to be applied.

So, our experts associated with DexLab Analytics developed an infographic to let big data analysts know the 12 most essential algorithms that must still be included in the repertoire of a skilled data scientist. To know more about data science courses drop DexLab Analytics and find your true data-based calling.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Are You a Student of Statistics? – You must know these 3 things

Are you a student of statistics?

We a premiere statistical and data analysis training institute offering courses on Big Data Hadoop, Business intelligence and Ai. We asked our faculty to tell us the three most important things that every student of elementary statistics should know.

So, let us get on with it:

  1. The notion that statistics is about numbers, is in the context only: statistics involves a rich treasure trove of numeric and graphical representation of displaying data to quantify them also it is very important to be capable of generating graphs along with numbers. But that is not the half part of statistics and the main interesting aspect is related to making the big leap from numbers and graphs to the realistic worldly interpretations. Uncannily statistics also poses to be a fascinating philosophical tension raising the question and healthy skepticism about we believe in and what we do not.
  2. The analysis part is not the most crucial part of a statistical study, the most important part lies with the when, where and how of gathering the data. We must not forget when we enter each number or data, calculate and plot the strategies we build on our understanding, but many a times at the time of interpretation that each every graph, data or number is a product of a fallible machine, be it organic or mechanical. If we are able to take proper care at the stage of sampling and observation we will be able to obtain great dividends at the final stage of interpretation and analysis of all our statistical efforts.
  3. All statistical functions off all kinds of mathematical sciences are based on a two-way communication system. This communication system should be between the statistician and non-statistician end. The main aim of statistical analysis is to put forward important social, public and scientific questions. A good statistician knows how to communicate with the public especially with those who are by and large not statisticians. Also the public here plays an important role and must possess simple idea of statistical conclusions to grasp what the statisticians have to say to them. This is an important criterion to be incorporated in the K-12 and college curriculum for elementary statistical students.

Data Science Machine Learning Certification

If you agree with our views and would like to discuss further on statistics and its application on data analysis then feel free drop by DexLab Analytics and stay updated on the latest trends in data management and mining.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more