artificial intelligence training institute in Gurgaon Archives - Page 6 of 9 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

8 Applications of AI and Machine Learning in our Daily Lives

8 Applications of AI and Machine Learning in our Daily Lives

Artificial intelligence (AI) and machine learning are today thought to be one of the biggest innovations since the microchip. With the advancement of the science of neural networks, scientists are making extraordinary breakthroughs in machine learning through what is termed as deep learning. These sciences are making life easier and more streamlined for us in more ways than one. Here are a few examples.

1. Smart Gaming

Artificial Intelligence and Machine Learning are used in smart gaming techniques, especially in games that primarily require the use of mental abilities like chess. Google DeepMind’s AlphaGo learnt to play chess, and defeat champions like Lee Sedol (in 2016) by not only studying the moves of masters but by learning how to play the game by practising against itself innumerable times.

2. Automated Transportation

When we fly in an airplane, we experience automated transportation in the sense that a human pilot is only flying the plane for a couple of minutes during take-off and landing. The rest of the flight is maneuvered by a Flight Management System, a synchronization of GPS, motion sensors and computer systems that track flight position. Google Maps has already revolutionized local transport by studying coordinates from smart phones to determine how fast or slow a vehicle is moving and therefore how much traffic there is on a given road at any point of time.

3. Dangerous Jobs

AI technology powered robots are taking over dangerous jobs like bomb disposal and welding. In bomb disposal, today, robots need to be controlled by humans. But scientists believe there will soon come a time when these tasks would be completed by robots themselves. This technology has already saved hundreds of lives. In the field of welding, a hazardous job which entails working in high levels of noise and heat in a toxic environment, robots are helping weld with greater accuracy.

Data Science Machine Learning Certification

4. Environmental Protection

Machine Learning and artificial intelligence run on big data, large caches of data and mind boggling statistics generated by computer systems. When put to use in the field of environmental protection, these technologies could be used to extract actionable solutions to untenable problems like environmental degradation. For instance, “IBM’s Green Horizon Project studies and analyzes environmental data from thousands of sensors and sources to produce accurate, evolving weather and pollution forecasts.”

5. Robots as Friends

A company in Japan has invented what it calls a robot companion named Pepper who can understand and feel emotions and empathy. Introduced in 2014, Pepper went on sale in 2015 and all the 1000 units were sold off immediately. “The robot was programmed to read human emotions, develop its own, and help its human friends stay happy,” a report says. Robots could also assist the aged in becoming independent and take care of themselves, says a computer scientist at Washington State University.

6. Health Care

Hospitals across the world are mulling over the adoption of AI and ML to treat patients so there are reduced instances of hospital related accidents and spread of diseases like sepsis. AI’s predictive models are helping in the fight against genetic diseases and heart ailments. Also, Deep Learning models which “quickly provide real-time insights and…are helping healthcare professionals diagnose patients faster and more accurately, develop innovative new drugs and treatments, reduce medical and diagnostic errors, predict adverse reactions, and lower the costs of healthcare for providers and patients.”

7. Digital Media

Machine learning has revolutionized the entertainment industry and technology has already found buyers in streaming services such as Netflix, Amazon Prime, Spotify, and Google Play. “ML algorithms are…making use of the almost endless stream of data about consumers’ viewing habits, helping streaming services offer more useful recommendations.”

These technologies will assist with the production of media too. NLP (Natural Language Processing) algorithms help write and compose trending news stories, thus cutting on production time. Moreover, a new MIT-developed AI model named Shelley “helps users write horror stories through deep learning algorithms and a bank of user-generated fiction.”

8. Home Security and Smart Stores

AI-integrated cameras and alarm systems are taking the home security world by storm. The cutting-edge systems “use facial recognition software and machine learning to build a catalog of your home’s frequent visitors, allowing these systems to detect uninvited guests in an instant.” Brick and Mortar stores are likely to adopt facial recognition for payments by shoppers. Biometric capabilities are largely being adopted to enhance the shopping experience.

Key Takeaway

AI is no longer the domain of fiction. It’s our new reality and is it no surprise then that it is revolutionizing our lives. Deep learning training institutes and Machine Learning courses in India along with Artificial Intelligence courses in Delhi abound because India too is attempting to make the most of the AI revolution.


.

How AI and Machine Learning are Helping Fight Coronavirus

How AI and Machine Learning are Helping Fight Coronavirus

A Toronto based AI-startup detected the outbreak of coronavirus, a large family of viruses which infect the respiratory tract of human beings and animals, hours after the first few cases were diagnosed in Wuhan in December 2019.

More than 100,000 people the world over have been infected by the novel coronavirus since then and more than 4000 people have died, most in China.

The start-up team confirmed their findings and informed their clients about an “unusual pneumonia” in a market place in Wuhan a week before Chinese authorities and international health bodies made formal announcements about the virus and the epidemic. The key to the company’s ability to detect and warn of a possible outbreak of an epidemic is AI and big data.

NLP and Machine Learning

The company uses natural language processing or NLP and machine learning to, says a report, “cull data from hundreds of thousands of sources, including statements from official public health organizations, digital media, global airline ticketing data, livestock health reports and population demographics. It’s able to rapidly process tons of information every 15 minutes, 24 hours a day.”

This information becomes the basis of reports compiled by computer programmers and physicians. Also, they do not just detect the outbreak of a disease but also track its spread and the consequences.

In the case of COVID-19, the company besides sending out an alert, correctly identified the cities that were highly connected to Wuhan using data on global airline ticketing “to help anticipate where the infected might be travelling.”

GDP

“Already, the COVID-19 coronavirus is likely to cut global GDP growth by $1.1 trillion this year, in addition to having already wiped around $5 trillion off the value of global stock markets,” a report says.

The vast amount of X-rays and scans people across the world are undergoing in this outbreak of coronavirus has strained medical resources and systems across the world. That is why AI and machine learning models are being trained to read accurately vast amounts of data tirelessly, and efficiently.

Thermal Scanners

China has already deployed AI-powered thermal scanners at railway stations in major cities to read and record, from a distance through infrared, body temperatures of persons passing to detect a fever. This technology has to a large extant reduced stress on institutions across the country.

But it must be noted that AI is set to become a huge firewall against infectious diseases and pandemics not only by powering diagnostic techniques but by identifying potential vaccines and lines of treatment against the next coronavirus and COVID-19 itself within days.

Data Science Machine Learning Certification

Robots

Also, AI and big data are helping revolutionize the medical management system in China. With the outbreak of the pandemic, China hospitals are using robots to reduce the stresses piled on medical staff. Ambulances in the city of Hangzhou are assisted by AI in navigation to help them reach patients and people suspecting an infection faster.

“Robots have even been dispatched to a public plaza in Guangzhou in order to warn passersby who aren’t wearing face-masks…China is also allegedly using drones to ensure residents are staying at home and reducing the risk of the coronavirus spreading further.”

In India, though the virus has been detected in some states, it has not spread as alarmingly as it has in other countries. It is now more than ever important to concentrate on building more robust and competent Artificial Intelligence courses in Delhi and Machine Learning courses in India.


.

Why Python is Preferred in AI and Machine Learning?

Why Python is Preferred in AI and Machine Learning?

Python has become one of the leading coding languages across the globe and for more reasons than one. In this article, we evaluate why Python is beneficial in the use of Machine Learning and Artificial Intelligence applications.

Artificial intelligence and Machine Learning are profoundly shaping the world we live in, with new applications mushrooming by the day. Competent designers are choosing Python as their go-to programming language for designing AI and ML programs.

Artificial Intelligence enables music platforms like Spotify to prescribe melodies to users and streaming platforms like Netflix to understand what shows viewers would like to watch based on their tastes and preferences. The science is widely being used to power organizations with worker efficiency and self-administration. 

Machine-driven intelligence ventures are different from traditional programming languages in that they have innovation stack and the ability to accommodate an AI-based experiment. Python has these features and more. It is a steady programming language, it is adaptable and has accessible instruments.

Here are some features of Python that enable AI engineers to build gainful products.

  • An exemplary library environment 

“An extraordinary selection of libraries is one of the primary reasons Python is the most mainstream programming language utilized for AI”, a report says. Python libraries are very extensive in nature and enable designers to perform useful activities without the need to code them from scratch.

Machine Learning demands incessant information preparation, and Python’s libraries allows you to access, deal with and change information. These are libraries can be used for ML and AI: Pandas, Keras, TensorFlow, Matplotlib, NLTK, Scikit-picture, PyBrain, Caffe, Stats models and in the PyPI storehouse, you can find and look at more Python libraries. 

  • Basic and predictable 

Python has on offer short and decipherable code. Python’s effortless built allows engineers to make and design robust frameworks. Designers can straightway concentrate on tackling an ML issue rather concentrating on the subtleties of the programming language. 

Moreover, Python is easy to learn and therefore being adopted by more and more designers who can easily construct models for AI. Also, many software engineers feel Python is more intuitive than other programming languages.

  • A low entry barrier 

Working in the ML and AI industry means an engineer will have to manage tons of information in a prodigious way. The low section hindrance or low entry barrier allows more information researchers to rapidly understand Python and begin using it for AI advancement without wasting time or energy learning the language.

Moreover, Python programming language is in simple English with a straightforward syntax which makes it very readable and easy to understand.

Data Science Machine Learning Certification

Conclusion

Thus, we have seen how advantageous Python is as a programming language which can be used to build AI models with ease and agility. It has a broad choice of AI explicit libraries and its basic grammar and readability make the language accessible to non-developers.

It is being widely adopted by developers across institutions working in the field of AI. It is no surprise then that artificial intelligence courses in Delhi and Machine Learning institutes in Gurgaon are enrolling more and more developers who want to be trained in the science of Python.


.

Applications of Artificial Intelligence: Healthcare

Applications of Artificial Intelligence: Healthcare

This article, the second part of a series, is on the application of artificial intelligence in the field of healthcare. The first part of the series mapped the applications of AI and deep learning in agriculture, with an emphasis on precision farming.

 AI has been taking the world by storm and its most crucial application is to the two fields mentioned above. Its application to the field of healthcare is slowly expanding, covering fields of practice such as radiology and oncology.

Stroke Prevention

In a study published in Circulation, a researcher from the British Heart Foundation revealed that his team had trained an artificial intelligence model to read MRI scans and detect compromised blood flow to and from the heart.

And an organisation called the Combio Health Care developed a clinical support system to assist doctors in detecting the risk of strokes in incoming patients.

Brain-Computer Interfaces

Neurological conditions or trauma to the nervous system can adversely affect a patient’s motor sensibilities and his or her ability to meaningfully communicate with his or her environment, including the people around.

AI powered Brain-Computer Interfaces can restore these fundamental experiences. This technology can improve lives drastically for the estimated 5,00,000 people affected by spinal injuries annually the world over and also help out patients affected by ALS, strokes or locked-in syndrome.

Radiology

Radiological imagery obtained from x-rays or CT scanners put radiologists in danger of contracting infection through tissue samples which come in through biopsies.  AI is set to assist the next generation of radiologists to completely do away with the need for tissue samples, experts predict.

A report says “(a)rtificial intelligence is helping to enable “virtual biopsies” and advance the innovative field of radiomics, which focuses on harnessing image-based algorithms to characterize the phenotypes and genetic properties of tumors.”

Cancer Treatment

One reason why AI, has made immense advancements in the field of medical oncology is the vast amount of data generated during cancer treatment.

Machine learning algorithms and their ability to study and synthesize highly complex datasets may be able to shed light on new options for targeting therapies to a patient’s unique genetic profile.

Developing countries

Most developing counties suffer from health care systems working on shoe-string budgets with a lack of critical healthcare providers and technicians. AI-powered machines can help plug the deficit of expert professionals.

For example, AI imaging tools can study chest x-rays for signs of diseases like tuberculosis, with an impressive rate of accuracy comparable to human beings. However, algorithm developers must bear in mind the fact that “(t)he course of a disease and population affected by the disease may look very different in India than in the US, for example,” the report says. So an algorithm based on a single ethnic populace might not work for another.

Conclusion

It is no surprise then that developing countries like India are even more enthusiastic about adopting deep learning courses in Delhi and machine learning and artificial intelligence sciences in the healthcare sector. Machine Learning courses in India are coming up everywhere and it is important to note that DexLab Analytics is one of the leading artificial intelligence training institute in Gurgaon. Do visit the website today.


.

Deep Learning — Applications and Techniques

Deep Learning — Applications and Techniques

Deep learning is a subset of machine learning, a branch of artificial intelligence that configures computers to perform tasks through experience. While classic machine-learning algorithms solved many problems, they are poor at dealing with soft data such as images, video, sound files, and unstructured text.

Deep-learning algorithms solve the same problem using deep neural networks, a type of software architecture inspired by the human brain (though neural networks are different from biological neurons). Neural Networks are inspired by our understanding of the biology of our brains – all those interconnections between the neurons. But, unlike a biological brain where any neuron can connect to any other neuron within a certain physical distance, these artificial neural networks have discrete layers, connections, and directions of data propagation.

The data is inputted into the first layer of the neural network. In the first layer individual neurons pass the data to a second layer. The second layer of neurons does its task, and so on, until the final layer and the final output is produced. Each neuron assigns a weighting to its input — how correct or incorrect it is relative to the task being performed. The final output is then determined by the total of those weightings.

Deep Learning Use Case Examples

Robotics

Many of the recent developments in robotics have been driven by advances in AI and deep learning. Developments in AI mean we can expect the robots of the future to increasingly be used as human assistants. They will not only be used to understand and answer questions, as some are used today. They will also be able to act on voice commands and gestures, even anticipate a worker’s next move. Today, collaborative robots already work alongside humans, with humans and robots each performing separate tasks that are best suited to their strengths.

Agriculture

AI has the potential to revolutionize farming. Today, deep learning enables farmers to deploy equipment that can see and differentiate between crop plants and weeds. This capability allows weeding machines to selectively spray herbicides on weeds and leave other plants untouched. Farming machines that use deep learning–enabled computer vision can even optimize individual plants in a field by selectively spraying herbicides, fertilizers, fungicides and insecticides.

Medical Imaging and Healthcare

Deep learning has been particularly effective in medical imaging, due to the availability of high-quality data and the ability of convolutional neural networks to classify images. Several vendors have already received FDA approval for deep learning algorithms for diagnostic purposes, including image analysis for oncology and retina diseases. Deep learning is also making significant inroads into improving healthcare quality by predicting medical events from electronic health record data.  Earlier this year, computer scientists at the Massachusetts Institute of Technology (MIT) used deep learning to create a new computer program for detecting breast cancer.

Here are some basic techniques that allow deep learning to solve a variety of problems.

Fully Connected Neural Networks

Fully Connected Feed forward Neural Networks are the standard network architecture used in most basic neural network applications.

Deep Learning — Applications and Techniques

In a fully connected layer each neuron is connected to every neuron in the previous layer, and each connection has its own weight. This is a totally general purpose connection pattern and makes no assumptions about the features in the data. It’s also very expensive in terms of memory (weights) and computation (connections).

Deep Learning — Applications and Techniques

Each neuron in a neural network contains an activation function that changes the output of a neuron given its input. These activation functions are:

  • Linear function: – it is a straight line that essentially multiplies the input by a constant value.
  •  Sigmoid function: – it is an S-shaped curve ranging from 0 to 1.
  • Hyperbolic tangent (tanH) function: – it is an S-shaped curve ranging from -1 to +1
  • Rectified linear unit (ReLU) function: – it is a piecewise function that outputs a 0 if the input is less than a certain value or linear multiple if the input is greater than a certain value.

Each type of activation function has pros and cons, so we use them in various layers in a deep neural network based on the problem. Non-linearity is what allows deep neural networks to model complex functions.

Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a type of deep neural network architecture designed for specific tasks like image classification. CNNs were inspired by the organization of neurons in the visual cortex of the animal brain. As a result, they provide some very interesting features that are useful for processing certain types of data like images, audio and video.

Deep Learning — Applications and Techniques

Mainly three main types of layers are used to build ConvNet architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer (exactly as seen in regular Neural Networks). We will stack these layers to form a full ConvNet architecture.  A simple ConvNet for CIFAR-10 classification could have the above architecture [INPUT – CONV – RELU – POOL – FC].

  • INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32, and with three color channels R,G,B.
  • CONV layer will compute the output of neurons that are connected to local regions in the input, each computing a dot product between their weights and a small region they are connected to in the input volume. This may result in volume such as [32x32x12] if we decided to use 12 filters.
  • RELU layer will apply an elementwise activation function, such as the max(0,x)max(0,x)thresholding at zero. This leaves the size of the volume unchanged ([32x32x12]).
  • POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in volume such as [16x16x12].
  • FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each of the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with ordinary Neural Networks and as the name implies, each neuron in this layer will be connected to all the numbers in the previous volume.

In this way, ConvNets transform the original image layer by layer from the original pixel values to the final class scores. Note that some layers contain parameters and others don’t. In particular, the CONV/FC layers perform transformations that are a function of not only the activations in the input volume, but also of the parameters (the weights and biases of the neurons). On the other hand, the RELU/POOL layers will implement a fixed function. The parameters in the CONV/FC layers will be trained with gradient descent so that the class scores that the ConvNet computes are consistent with the labels in the training set for each image.

Convolution is a technique that allows us to extract visual features from an image in small chunks. Each neuron in a convolution layer is responsible for a small cluster of neurons in the receding layer. CNNs work well for a variety of tasks including image recognition, image processing, image segmentation, video analysis, and natural language processing.

Recurrent Neural Network

The recurrent neural network (RNN), unlike feed forward neural networks, can operate effectively on sequences of data with variable input length.

The idea behind RNNs is to make use of sequential information. In a traditional neural network we assume that all inputs (and outputs) are independent of each other. But for many tasks that is a very bad idea. If you want to predict the next word in a sentence you better know which words came before it. RNNs are called recurrent because they perform the same task for every element of a sequence, with the output being depended on the previous computations. Another way to think about RNNs is that they have a “memory” which captures information about what has been calculated so far. This is essentially like giving a neural network a short-term memory. This feature makes RNNs very effective for working with sequences of data that occur over time, For example, the time-series data, like changes in stock prices, a sequence of characters, like a stream of characters being typed into a mobile phone.

The two variants on the basic RNN architecture that help solve a common problem with training RNNs are Gated RNNs, and Long Short-Term Memory RNNs (LSTMs). Both of these variants use a form of memory to help make predictions in sequences over time. The main difference between a Gated RNN and an LSTM is that the Gated RNN has two gates to control its memory: an Update gate and a Reset gate, while an LSTM has three gates: an Input gate, an Output gate, and a Forget gate.

RNNs work well for applications that involve a sequence of data that change over time. These applications include natural language processing, speech recognition, language translation, image captioning and conversation modeling.

Conclusion

So this article was about various Deep Learning techniques. Each technique is useful in its own way and is put to practical use in various applications daily. Although deep learning is currently the most advanced artificial intelligence technique, it is not the AI industry’s final destination. The evolution of deep learning and neural networks might give us totally new architectures. Which is why more and more institutes are offering courses on AI and Deep Learning across the world and in India as well. One of the best and most competent artificial intelligence certification in Delhi NCR is DexLab Analytics. It offers an array of courses worth exploring.


.

Applications of Artificial Intelligence: Agriculture

Applications of Artificial Intelligence: Agriculture

This article, the first part of a series, is on the application of artificial intelligence in agriculture. Popular applications of AI in agriculture can be sectioned off into three aspects – AI powered robots, computer vision and seasonal forecasting.

Robots

Firstly, companies are now gradually adopting AI powered machines to automate agricultural tasks such as harvesting larger volumes of crops faster than human workers. For instance, companies are using robots to remove weeds and unwanted plants from fields.

Computer Vision

Secondly, companies are using computer vision and deep learning algorithms to process and study crop and soil health. For instance, farmers are using unmanned drones to survey their lands in real time to identify problem areas and areas of potential improvement. Farms can be monitored frequently using these machines than they can be with farmers doing so on foot.

Seasonal Forecasting

Thirdly, AI is used to track and predict environmental impacts such as weather changes. “Seasonal forecasting is particularly valuable for small farms in developing countries as their data and knowledge can be limited. Keeping these small farms operational and growing bountiful yields is important as these small farms produce 70% of the world’s crops,” says a report .

The India story

In India, for instance, farmers are gradually working with technology to predict weather patterns and crop yield. Since 2016, Microsoft and a non-profit have together developed an AI sowing application which is used to guide farmers on when to sow seeds based on a study of weather patterns, local crop yield and rainfall.

Data Science Machine Learning Certification

In the year 2017, the pilot project was broadened to encompass over 3,000 farmers in Andhra Pradesh and Karnataka and it was found that those farmers who received the AI-sowing app advisory text messages benefitted wherein they reported 10–30% higher yields per hectare.

Chatbots

Moreover, farmers across the world have begun to turn to chatbots for assistance and help, getting answers to a variety of questions and queries regarding specific farm problems.

Precision Farming

Research predicts the precision agriculture market to touch $12.9 billion by 2027. Precision agriculture or farming, also called site-specific crop management or satellite farming, is a concept of farm management that utilizes information technology to ensure optimum health and productivity of crops.

With this increase in the volume of satellite farming, there is bound to be an increase in the demand for sophisticated data-analysis solutions. One such solution has been developed by the University of Illinois. The system developed aims to “efficiently and accurately process precision agricultural data.”

A professor of the University says, “We developed methodology using deep learning to generate yield predictions…”

Conclusion

The application of artificial intelligence to analyze data from precision agriculture is a nascent development, but it is a growing one. Environment vagaries and factors like food security concerns have forced the agricultural industry to search for innovative solutions to protect and improve crop yield. Consequently, AI is steadily emerging as the game changer in the industry’s technological evolution.

It is no surprise then that AI training institutes are mushrooming all across the world, especially in India. For the best artificial intelligence certification in Delhi NCR, do check out the DexLab Analytics site today.


.

AI joins the fight against Cancer

AI joins the fight against Cancer

Cancer is the emperor of all maladies. Finding a cure to it is one of the biggest challenges in the world of medicine. More and more men and women, one in five men and one in six women worldwide likely to be afflicted, are falling prey to the malady. It is something that has spurred on the fight against the disease even more intensely.  AI and machine learning has increased the scope of groundbreaking research in the field and it is worth knowing a little about.

One reason why AI, which has made inroads into numerous sectors of the economy, has made immense advancements in the field of medical oncology is the vast amount of data generated during cancer treatment. With the assistance of AI, say scientists, this vast trove of data can be mined and worked to improve methods of diagnosis and preventive cures and treatments.

Detection of Cancer

Machine learning can lead to early detection and timely treatment in many cases. Because cancer is treated in stages, unlike other diseases, machine learning can come in handy when it comes to detection of precancerous lesions in tissues.

AI utilizing tools can assist radiologists in graphically and visually studying images by revealing suspicious lesions. This process not only reduces the work load of radiologists but it also makes possible the detection of miniscule lesions which could otherwise be overlooked.

Detection of Breast Cancer

“DeepMind and Google Health collaborated to develop a new AI system that helps in detecting breast cancer accurately at a nascent stage. Being the most common cancer in women, breast cancer, has seen an alarming rise over the past few years. Though early detection can improve a patient’s prognosis significantly, mammography, which is the best screening test currently available, is not entirely error-proof”, says a report.

To correct this, researchers at DeepMind and Google Health designed an algorithm on mammogram images and noticed AI systems reduced the recurrence of errors. They discovered that AI systems functioned better than human radiologists. A few startups in India are also laboring in the arena of cancer detection.

Predicting Cancer Evolution

Besides detection, AI is useful in the treatment of cancer as well. It is critical to the survival of patients in that it is used to predict growth and evolution of cancers which could help doctors prepare a treatment plan and save lives.

Identifying Effective Treatments

AI can play a significant role in the overall treatment of the patient, especially precision medicine which is the administering of personalized medicine from a pool of generic medication beneficial to the patient. AI can also be used to design new drugs.

Thus, AI has created a huge potential for changing the mode of treatment of cancer patients. According to the report, Exscientia is the first company, globally, to have overtaken conventional drug designing processes by automating the whole process using AI. Another company is trying to do the same in Bangalore.

Data Science Machine Learning Certification

It is no surprise then that AI is being even more widely adopted across sectors of healthcare and medicine. More and more professionals, the world over, are enrolling in courses teaching AI, deep learning and machine learning. For the best such institute in India, or for the best artificial intelligence training institute in Gurgaon, do not forget to visit the DexLab website today.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How AI and Deep Learning Helps In Weather Forecasting

 

How AI and Deep Learning Helps In Weather Forecasting

The world’s fight against extreme weather conditions and climate change is at the forefront of all discussions and debates on the environment. In fact, climate change is the biggest concern we are faced with today, and studying the climate has increasingly become the primary preoccupation of scientists and researchers. They have received a shot in the arm with the increase in the scope of artificial intelligence and deep learning in predicting weather patterns.

Take for instance the super cyclone Amphan that has ravaged West Bengal and Orissa. Had it not been for weather forecasting techniques, meteorologists would never had predicted the severity of the cyclone and the precautionary evacuation of thousands of people from coastal areas would not have been taken, leading to massive loss of lives. This is where the importance of weather forecasting lies.

Digitizing the prediction model

Traditionally, weather forecasting depends on a combination of observations of the current state of the weather and data sets from previous observations. Meteorologists prepare weather forecasts collecting a wealth of data and running it through prediction models. These sets of data come from hundreds of observations like temperature, wind speed, and precipitation produced by weather stations and satellites across the globe. Due to the digitization of these weather models, accuracy has improved much more than it was a few decades ago. And with the recent introduction of machine learning, forecasting has become an even more accurate and exact science.

Machine Learning

Machine learning can be utilized to make comparisons between historical weather forecasts and observations in real time. Also, machine learning can be used to make models account for inaccuracies in predictions, like overestimated rainfall.

At weather forecast institutions, prediction models use gradient boosting that is a machine learning technique for building predictive models. This is used to correct any errors that come into play with traditional weather forecasting.

Deep Learning

Machine Learning and Deep Learning are increasingly being used for nowcasting, a model of forecasting in the real time, traditionally within a two-hour time span. It provides precipitation forecasts by the minute. With deep learning, a meteorologist can anywhere in the vicinity of a weather satellite (which runs on deep learning technology) use nowcasting rather than just those who live near radar stations (which are used in traditional forecasting).

Extreme Weather Events

Deep learning is being used not only for predicting usual weather patterns, it is being used to predict extreme weather conditions as well. Rice University engineers have designed a deep learning computer system that has trained itself to predict, in accurate terms, extreme weather conditions like heat waves or cold waves. The computer system can do so up to five days in advance. And the most fascinating part is it uses the least information about current weather conditions to make predictions.

This system could effectively guide NWP (numerical weather prediction) that currently does not have the ability to predict extreme weather conditions like heat waves. And it could be a super cheap way to do so as well.

According to sciencedaily.com, with further development, the system could serve as an early warning system for weather forecasters, and as a tool for learning more about the atmospheric conditions that lead to extreme weather, said Rice’s Pedram Hassanzadeh, co-author of a study about the system published online in the American Geophysical Union’s Journal of Advances in Modeling Earth Systems.

Data Science Machine Learning Certification

Thus, it is no surprise then that machine learning and deep learning is being widely adopted the world over. In India, is it being taken up as a form of study and training in metropolitans like Delhi and Gurgaon. For the best Machine Learning course in Delhi and deep learning course in delhi, check out the DexLab Analytics website today.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Budget 2020 Focuses on Artificial Intelligence in a Bid to Build Digital India

Budget 2020 Focuses on Artificial Intelligence in a Bid to Build Digital India

The Indian technology industry has welcomed the 2020 budget for its outreach to the sector, specially the Rs 8000 crore mission for the next five years on Quantum Computing. The budget has been praised in general for its noteworthy allocation of funds for farm, infrastructure and healthcare to revive growth across sectors in the country.

According to an Economic Times report, Debjani Ghosh, President, NASSCOM, reacting to the budget, said, “Budget 2020 and the finance minister’s speech has well-articulated India’s vision on not just being a leading provider of digital solutions, but one where technology is the bedrock of development and growth’.

Industry insiders lauded the budget for the allocation on Quantum Computing, the policy outline for the private sector to construct data center parks and the abolition of the Dividend Distribution Tax. The abolition of the Tax had been a long standing demand of the industry and the move has been welcomed. The building of data parks will help retain data within the country, industry experts said.

Moreover, while announcing the budget this year, Finance Minister Nirmala Sitharaman spelt out the government’s intentions of utilizing, more intensely, technology, specially artificial intelligence and machine learning.

These will be used for the purposes of monitoring economic data, preventing diseases and facilitating healthcare systems under Ayushman Bharat, guarding intellectual property rights, enhancing and improving agricultural systems and sea ports and delivery of government services.

Governments the world over have been emphasising the deployment of AI for digital governance and research. As per reports, the US government plans and intends to spend nearly 1 billion US dollars on AI-related research and development this year.

The Indian government has also planned to make available digital connectivity to citizens at the gram panchayat level under its ambitious Digital India drive with a focus on carrying forward the benefits and advantages of a digital revolution by utilizing technology to the fullest. One lakh gram panchayats will be covered under the Rs 6000 crore Bharat Net project wherein fibre connectivity will be made available to households.  

“While the government had previously set up a national portal for AI research and development, in the latest announcement, the government has continued to offer its support for tech advancements. We appreciate the government’s emphasis on promoting cutting-edge technologies in India,” Atul Rai, co-founder & CEO of Staqu said in a statement, according to a report by Live Mint.

The Finance Minister also put forward a plan to give a fillip to manufacturing of mobiles, semiconductor packaging and electronic equipment. She iterated that there will be a cost-benefit to electronics manufacturing in India.

Data Science Machine Learning Certification

Thus, this article shows how much the government of India is concentrating on artificial intelligence and machine learning with a push towards digital governance. It shows that the government is recognising the need to capitalise on the “new oil” that is data, as the saying goes. So it is no surprise then that more and more professionals are opting for Machine Learning Course in India and artificial intelligence certification in delhi ncr. DexLab Analytics focuses on these technologies to train and skill professionals who want to increase their knowledge base in a digital first economy.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more