artificial intelligence certification in delhi ncr Archives - Page 4 of 9 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Using Deep Learning To Track Tropical Cyclones: A Study

Using Deep Learning To Track Tropical Cyclones: A Study

The severe cyclonic storm Nisarga approached the Maharashtra coast around Alibagh in Raigadh with “a sustained wind speed of 100-110 kmph” on June 3, 2020. Then it made landfall at Alibagh at around noontime. Landfall simply means that the storm, after having intensified over the ocean, has moved on to land.

Though the storm mellowed down in intensity as it approached the Maharashtra coast, government bodies took all precautions and evacuation work was done in advance on the basis of forecasts done by meteorologists and scientists.

To save lives and property, it is imperative to predict cyclones and the intensity with which they will strike. Deep Learning, a branch of artificial Intelligence, is helping scientists make breakthroughs in the science of forecasting cyclones.

Image Source: outlookindia.com

Existing Storm Forecast Models

Most conventional dynamical models make accurate short term predictions but they are computationally demanding and “current statistical forecasting models have much room for improvement given that the database of past hurricanes is constantly growing”, says a report.

A tropical cyclone forecast involves the prediction of several interrelated features like track, intensity, rainfall, storm surge etc. The development of current hurricane and cyclone forecasts have advanced over the years but they are largely statistical in nature. The main limitation of this method is the complexity and non-linearity of atmospheric systems.

Deep Learning Models

Recurrent Neural Networks in deep learning models have been, of late, used to study increasingly complicated systems instead of the traditional methods of forecasting because they promise more accuracy. RNNs are a class of artificial neural networks where the modification of weights allows the model to learn intricate dynamic temporal behaviours, says another report.

An RNN with the capability of modelling complex non-linear temporal relationships of a hurricane or a cyclone could increase the accuracy of predicting future cyclonic path forecasts.

Machine Learning

Generally speaking, there are two methods or approaches to detecting extreme weather events like tropical cyclones – the data driven method which includes machine learning and the model driven approach which includes numerical simulation.

“The model-driven approach has the limitation that the prediction error increases with lead time because numerical models are inherently dependent on initial values. On the other hand, machine learning, as a data-driven approach, requires a large amount of high-quality training data,” says a report.

High quality data is easy to procure given the large amounts of data generated from weather stations on a daily basis the world over. So the machine learning method is easier to work and generate results from.

Data Science Machine Learning Certification

Conclusion

So what was difficult to do, that is find suitable metrics to study and detect the path of tropical cyclones earlier, has now become easier to do and scientists have been able to achieve accuracy in their predictions through the use of neural networks and artificial intelligence in general. For more on the subject, do read our blog here and here. Dexlab Analytics is a premier Deep Learning training institute in Delhi.

 


.

How Artificial Intelligence Powers Earthquake Prediction

How Artificial Intelligence Powers Earthquake Prediction

Artificial Intelligence is the key to the future of weather forecasting, a fact well known. But did you know it is also powering earthquake prediction the world over? Yes. Artificial Intelligence techniques like machine learning are gradually being enlisted in forecasting seismic activity.

While earthquake prediction has not yet become an exact science, efforts are on to make improvements and make forecasts reliable. For this, AI powered neural networks, the same technology behind the success of driverless cars and digital assistants, is being used to enhance research based on seismic data.

Neural Networks

A report says that, “Scientists say seismic data is remarkably similar to the audio data that companies like Google and Amazon use in training neural networks to recognize spoken commands on coffee-table digital assistants like Alexa.”

When it comes to studying earthquakes, it is the computer, a fast and able machine, looking for patterns in mountains of data rather than relying on the weary eyes of a scientist. Also, instead of a sequence of words, what the computer is studying is a sequence of ground-motion measurements.

Studying Aftershocks
Image Source: cbs8.com

Studying Aftershocks

Scientists in the US have experimented with neural networks to accelerate earthquake analysis and the speed at which they were producing results and studies was 500 times faster than they could in the past. Also, AI is not only useful in studying earthquakes but it is being used in forecasting earthquake aftershocks as well.

In fact, researchers say it is a time of great scientific advancement, so much so, that “technology can do as well as — or better than — human experts”.

Artificial Intelligence
Image Source: smithsonianmag.com

Artificial Intelligence

Geophysicist Paul Johnson’s team in the US has been studying earthquakes for quite some time now and it has made advancements in “using pattern-finding algorithms similar to those behind recent advances in image and speech recognition and other forms of artificial intelligence, (where) he and his collaborators successfully predicted temblors in a model laboratory system — a feat that has since been duplicated by researchers in Europe”, says a report.

Now Mr Johnson’s team has published a paper wherein artificial intelligence has been used to study slow slip earthquakes in the Pacific Northwest. While advancements are being made in the field of studying slow slip earthquakes, it is the bigger and more potent ones that really need to be studied. But they are rare. So the question remains – Will Machine Learning be able to analyse a small data set and predict with confidence the next big earthquake?

Data Science Machine Learning Certification

Machine Learning 

Researchers claim “that their (machine learning) algorithms won’t actually need to train on catastrophic earthquakes to predict them.” Studies conducted recently suggest “seismic patterns before small earthquakes are statistically similar to those of their larger counterparts”. So, a computer trained on hundreds and thousands of those small temblors might be able enough to predict the big ones.

For more on artificial intelligence, and its varied applications, do peruse the DexLab Analytics website today. DexLab Analytics is a premier institute in India offering Machine Learning courses in Delhi.

 


.

How AI Powers Space Missions Like Those of SpaceX’s– A Study

How AI Powers Space Missions Like Those of SpaceX’s– A Study

On May 30, 2020 a SpaceX Falcon 9 rocket carrying Crew Dragon was launched at 3:22 p.m. US Eastern Time from the Kennedy Space Center, this being the first time a space mission was launched by NASA since it decommissioned its ageing and unsafe Space Shuttle fleet in 2011. The rocket was successful in deploying the vehicle into orbit and safely returning to Earth.

The mission

Aboard the Crew Dragon are astronauts Bob Behnken and Doug Hurley who are to be launched into the International Space Station. The mission marks the first time a private company has pulled off a crewed mission into low Earth orbit, a report said. The Crew Dragon and its self-landing, reusable Falcon 9 rocket is owned by SpaceX, who’s founder and CEO is Elon Musk. NASA just rents the spacecraft and the rocket at a cost of around $55 million per passenger, said another report.

AI in SpaceX’s mission

But did you know this historic mission is powered by the cutting edge technology of artificial intelligence? Yes! A sophisticated AI autopilot steers the cone-shaped Crew Dragon that is on its way to the ISS. Once the Crew Dragon reaches within 60 feet of the space station, the astronauts will maneuver the vehicle to the ISS and remain in space for weeks on end, depending on when they are called back. In 2018 too, a SpaceX rocket flew into space with the first robot powered by artificial intelligence.

Image Source: businessinsider.in

AI in Indian space missions

India too has been generating indigenous AI technology to power its space missions. Take for example its Chandrayaan-2 mission that was launched in July 2019. Scientists integrated AI technology with Chandryaan-2’s rover – Pragyan. A report said, the Indian Space Research Organisation delivered Pragyan – a solar-powered robotic vehicle that was to explore the lunar surface on six wheels. Moreover, “the artificial intelligence algorithm could also help the rover detect traces of water and other minerals on the lunar surface.”

How AI powers space exploration

AI helps analyze the huge amounts of data emanating from space exploration and this helps advance space exploration with each passing day. Moreover, AI is making it possible for rovers currently roving the atmosphere of Mars to take decisions independent of the mission. The NASA Curiosity rover can dodge obstacles on its route by itself and determine the best route possible. Data received from space is mainly in the form of images that are studied through machine learning techniques at the NASA Frontier Development Lab that has roped is the services of tech giants like IBM and Microsoft.

Infact, machine learning is helping in solar storm damage detection, atmosphere measurement, and determining the ‘space weather’ of a given planet through the magnetosphere and atmosphere measurement. Reports say the same technology is used in resource discovery in space. Moreover, AI applications “can optimize planetary tracking systems, enable smart data transmission, and nullify the risk of human error (by using predictive maintenance),” said this report.

Data Science Machine Learning Certification

So artificial intelligence is finding advanced applications is all sectors of the economy and it is clearly becoming indispensable to our lives. In India, institutes are trying hard to inculcate the science of artificial intelligence in the Indian workforce, an effort that is directly resulting in the founding of a great many challenging courses like artificial intelligence certification in Delhi NCR.

 


.

How AI is Transforming e-Commerce

How AI is Transforming e-Commerce

AI is transforming our world in more ways than one with the advent of self-checkout cash registers to security checks at airports. However, in this essay, we look at how AI is transforming the world of e-Commerce.

Already, tech giants are investing heavily in AI and machine learning systems to power their startups and new sources of business. A report, infact, shows that “a recent study by Business Insider suggests that as much as 85% of customer interactions will be managed without a human by as soon as 2020.”

Here is a short list of ways in which businesses are using AI to better understand their customers, generate new leads and provide an enhanced customer experience.

Customer-centric search

Companies like Twiggle are using NLP to “narrow, contextualise and ultimately improve search results for online shoppers.” This is being done to prevent customers from abandoning searches due to a high volume of irrelevant search results showing up on screens.

Also, with enhanced visual capabilities of AI powered software, “AI is enabling shoppers to discover complementary products (by) size, colour, shape, fabric or even brand”.

Retargeting customers

Many “businesses are overloaded with unmanageable customer data that they do little or nothing with. This is an incredible goldmine of intelligence that could be used to enhance the sales cycle.”

As AI develops, it can detect customer dwell time on e-Commerce platforms and strategize marketing offers for customers. “In other words, omni-channel retailers are starting to make progress in their ability to remarket to customers.”

More efficient sales process

Customers are spending more and more time on television and social media. So, if you “want to tailor your problem-solving solutions and create a strong sales message that reaches consumers at the right time on the right platform, then integrating AI into your CRM is the way to go.”

Many AI systems enable NLP and voice input systems like Siri or Alexa that allow them to answer customer queries, solve problems and also identify new arenas of opportunities for the sales team.

Personalization across multiple devices

Personalization is the crux of e-Commerce, like you must have experienced on platforms like Amazon. However, with each passing day, AI systems are becoming more sophisticated with deeper levels of personalization penetrating the ecommerce world.

“Whether it is a mobile application, the website, or an email campaign, the AI engine is continuously monitoring all devices and channels to create a universal customer view. This unified customer view enables e-Commerce retailers to deliver a seamless customer experience across all platforms.”

Data Science Machine Learning Certification

Chatbots

Moving from mass-market sales to individualized marketing, many e-Commerce retailers are becoming more sophisticated with their AI capabilities “in capturing attention, and one approach widely developing is known as ‘conversational commerce’.”

“In the e-Commerce world, this is the confluence of visual, vocal, written and predictive capabilities. ”Chatbots are one such simulation system that goes a long way in building customer service relations. To read more about chatbots, do go through our previous blog on the subject.

DexLab Analytics, a premiere artificial intelligence training institute in Gurgaon, trains professionals in the latest technological advancements available.

 


.

How AI is Assisting The Science of Weather Prediction in Times of Cyclones Like Amphan

How AI is Assisting The Science of Weather Prediction in Times of Cyclones Like Amphan

The Amphan super cyclone last week ravaged West Bengal in India and parts of Bangladesh, killing scores of people, damaging houses, uprooting trees and electricity poles and flooding large swathes of land. The category 2 storm, with wind speeds over 150 km per hour was predicted several days earlier and this helped the concerned governments evacuate thousands of people before it struck.

Thus, we can hardly emphasise the importance of weather forecasting and prediction in today’s world, especially when climate change is at it severest. By some estimates, for instance, in 2016 there were nearly 800 weather related disaster events, thrice the number recoded in 1980. And even if all countries adhere to the Paris climate pledges, by 2100, it is likely that average global temperatures will be higher than pre industrial times by 3 degrees.

Artificial Intelligence

It is therefore imperative for us to study how Artificial Intelligence and its many branches like machine learning, deep learning and neural networks are helping predict weather events. For instance, researchers at Rice University have developed a deep learning model that can predict heat waves and winter storms, i.e. extreme weather conditions. The model was trained by studying hundreds of maps that showed surface temperatures and air pressures. After training, the model was used to read maps it had never seen before and it predicted weather conditions with upto 85 percent accuracy.

Machine Learning

Similarly, Microsoft is investing huge sums of money in ‘AI for Earth’, its flagship project committed to developing machine learning models to predict weather conditions. It has given grants to Columbia University professors to study the pattern of tree distribution in storm affected areas of America by processing thousands of images. In turn, the prediction model studies how much Carbon Dioxide decomposed vegetation is emitting into the atmosphere resulting in global warming.

Deep Neural Networks

Deep neural networks (DNNs) are gradually replacing physics based models of weather forecasting that have been in use for decades now. DNNs are being used to supplant parameterization of physical schemes in the traditional weather forecasting model in the US. DNNs help save on computational complexity in the forecasting process and help in scalability without compromising the model’s prediction accuracy. Humidity, wind velocity, temperatures and much more can be studied and predicted using DNNs.

Data Science Machine Learning Certification

In India

Last year the Ministry of Earth Sciences organised an event wherein officials said artificial intelligence will be used to predict extreme weather conditions in India. In an article, it was reported that a top ministry official said, “Society needs information about extreme weather events at least 7 days in advance which we are yet to achieve. We are working to provide impact based forecast to society that will tell people about how it will impact their lives. To achieve this, we are going to use artificial intelligence and machine learning to help in improving our understanding of weather and climate phenomena and their forecasting.”

Thus, it is no surprise that more and more institutes in India are gearing themselves for the AI revolution in the country. DexLab Analytics is one such artificial intelligence training institute in Gurgaon to look out for.

 


.

How AI is Powering Manufacturing in 2020

How AI is Powering Manufacturing in 2020

The world has seen a transformation in its economic activities since the coronavirus pandemic broke out. Economies have come to a grinding halt and manufacturing has dipped. Now what nations need is resilience and strength to carry on production in all sectors. What they are most depending on is the power of Artificial Intelligence to enhance the manufacturing process and help save money and drive down costs.

Here are some examples of how AI is powering the manufacturing sector in 2020.

  • AI is being used to transform machinery maintenance and quality in manufacturing operations today, according to Capgemini.
  • Caterpillar’s Marine Division is using machine learning to analyze data on how often its shipping equipment should be cleaned helping it save thousands of dollars.
  • The BMW Group is using AI to study manufacturing component images in and spot deviations from the standard production procedure in real-time.

In fact, a study shows that in the four earlier global economic downturns companies using AI were actually successful in increasing both sales and profit margins. Companies are all striving to utilize human experience, insights and AI techniques to give manufacturing a fillip in these times of a crisis.

Manufacturing using AI in real-time

Real-time monitoring of the manufacturing process is advantageous because it translates to sorting out production bottlenecks, tracking scrap rates and meeting customer deadlines among other things. The huge cache of data used can be utilized to build machine learning models.

Supervised and unsupervised machine learning algorithms can study multiple production shifts’ real-time data within seconds and predict processes, products, and workflow patterns that were not known before. A report  suggests 29% of AI implementations in manufacturing are for maintaining machinery and production assets.

Detecting Outages

It was found that the most popular use of AI in manufacturing is predicting when equipment are likely to fail and suggesting optimal times to conduct maintenance. Companies like General Motors analyze images of its robots from cameras mounted above to spot anomalies and possible failures in the production line and thus preempt outages.

Optimizing Design

General Motors uses AI algorithms to give and produce optimized product design. General Motors can achieve the goal of rapid prototyping with the help of AI and ML algorithms. Designers provide definitions of the functional needs, raw materials, manufacturing methods and other constraints and the company along with AutoDesk has customized Dreamcatcher to optimize for weight and other vital criterion. In this way, AI comes together with human endeavor to produce a-class product designs that cost lesser.

Data Science Machine Learning Certification

Inconsistencies

Nokia has begun using a video application that takes the help of machine learning to alert an assembly operator if there are inconsistencies in the production process in one of its factories in Oulu, Finland. It alerts a machine operator about inconsistencies in the production of electronic items and this helps preempt poor production process and helps the company save on a lot of money and capital.

There are many other production processes AI is helping revolutionize. Only time will tell how much of AI will power the manufacturing sector. But this technological advancement is surely making an impact on economies worldwide. Meanwhile, for more details, do peruse the DexLab Analytics website. DexLab Analytics is a premiere machine learning institute in Gurgaon.

 


.

7 Everyday Applications of AI

7 Everyday Applications of AI

If you Google searched for “artificial intelligence” and somehow came across this article, you just made use of artificial intelligence. Or, if you hailed a cab through an app like Uber or Ola, you just made use of artificial intelligence. The science of AI is all around us, in the smallest aspects of our lives. We take a look at how AI impacts our everyday lives in amazing ways.

Google Maps and Ride-Hailing Applications

Till only recently GPS (Satellite-based navigation) was guiding us through. But now artificial intelligence has come in to revolutionize the game, enabling systems like Google Maps to know exact directions, the optimal route and even road barriers and traffic congestion. Cab hailing apps have also made use of this technology.

Face Detection and Recognition

Making use of virtual filters when taking pictures and using face ID to unlock phones are two of the applications of AI in everyday lives. The former uses face detection and the latter uses face recognition. Smart machines are taught to identify facial coordinates in pictures of faces to enable face detection and recognition features.

Text Editors or Autocorrect

When we type out something onto a word document, inbuilt auto-correct tools begin perusing our script for spelling mistakes or grammatical anomalies.

Artificially intelligent algorithms also use machine learning, deep learning, and natural language processing to identify incorrect usage of language and suggest corrections.

Search and Recommendation Algorithms

Smart recommendations systems, that power our music applications and ecommerce websites, learn user behavior and interests from online activities.

“The personalized experience is made possible by continuous training. The data is collected at the frontend (from the user), stored as big data and analyzed through machine learning and deep learning. It is then able to predict your preferences by recommendations that keep you entertained without having to search any further,” a report says.

Chatbots

Answering questions can be time consuming, especially if they are coming from a customer. Chatbots are taught to impersonate the conversational styles of human beings through NLP (Natural Language Processing) so they can answer customer queries and take and track orders. They will give the impression of a customer representative when, in fact, they are just another example of artificial intelligence.

Digital Assistants

The latest digital assistants are well acquainted with human language and incorporate advanced NLP and ML. “They understand complex command inputs and give satisfactory outputs. They have adaptive capabilities that can analyze your preferences, schedules, and habits. This allows them to systemize, organize and plan things for you in the form of reminders, prompts and schedules.”

Data Science Machine Learning Certification

Social Media

Various social media applications are using the support of AI to control problems like cyber crime, cyber bullying, and hate speech. “AI algorithms can spot and swiftly take down posts containing hate speech a lot faster than humans could. This is made possible through their ability to identify hate keywords, phrases, and symbols in different languages. These have been fed into the system, which has the additional capability to add neologisms to its dictionary. The neural network architecture of deep learning is an important component of this process.”

So, you see how AI had come to influence more aspects of our lives than we could have imagined. This essay was brought to you by DexLab Analytics. DexLab Analytics is a premiere artificial intelligence training institute in Gurgaon.

 


.

How AI Is Facilitating Digital Marketing

How AI Is Facilitating Digital Marketing

Artificial Intelligence has transformed the world of digital marketing by making it ultra intelligent and intuitive. Almost every platform used by the digital marketer is powered by some form of AI or an AI-powered machine learning model.

If we were to define what AI marketing is, according to a report by Forbes, it is a method of leveraging technology to improve the customer journey. It can also be used to boost the return on investment (ROI) of marketing campaigns.

How AI Works In Marketing Strategies

AI plays a very important role in eliminating guesswork when it comes to customer interactions online like in email marketing. Big Data Analytics, machine learning and other related processes gain insights into target audience behaviour. “With these insights, you can create more effective customer touch points.”

Moreover, it is gradually automating processes that were once dependent on human beings. Content generation, PPC ads, and even web design and video marketing are all possible applications for AI marketing.

Marketing Campaigns

AI, in the world of digital marketing, can streamline and optimize marketing campaigns. “It can also eliminate the risk of human error”. It acts as a support system to shore up efforts born out of human ingenuity with its data driven reports and analyses.

While AI might be able to launch a marketing campaign all on its own, human attributes like empathy, compassion and the art of storytelling are still needed to shape up the soul of an online marketing campaign.

Content Generation And Curation

“At present, content marketing has ballooned into a global industry. It’s so prevalent that some refer to it as the only type of marketing.” Moreover, AI powered content marketing strategies are also becoming a rage.

AI can be used potentially for both curating and generating content. Already, companies are using AI for automated content generation at a basic level. But in the long run, “AI could generate viable topics for writers, or even develop initial drafts of content based on certain parameters”.

Digital Advertising

AI is also gradually transforming the way businesses advertise. In fact, today’s digital advertising strategies all have a basic level of AI powered models processing them.

AI works with the help of algorithms in its systems. “These systems operate autonomously, placing the right kinds of ads in front of the right kinds of people based on complex algorithms and big data.” This feature service is known as “programmatic advertising.”

Chatbots

Chatbots have become the latest game changer when it comes to the marketing industry. They are the first interface customers encounter on many websites today, giving the website a human touch, excelling at answering customers’ frequently asked questions.

“The key fascination with chatbots is the impact they can have on the customer experience. For some businesses, there aren’t enough employees or hours in the day to answer customer queries quickly. Chatbots allow customers to help themselves.”

Data Science Machine Learning Certification

Behavior Analysis And Predictive Analytics

More and more companies are beginning to hire data scientists and programmers for their marketing departments. There “are so many data sets (on the Internet) that humans alone can’t possibly hope to analyze them all.”

“Using machine learning and big data analysis, AI is able to provide businesses with deep insights into their customer(s’ behaviour). Not only will businesses be able to hyper-personalize interactions, but…they’ll also be able to predict future customer behaviours based on the data collected.”

For more information on AI powered systems, do peruse the DexLab Analytics website today. DexLab Analytics is a premiere institute that offers artificial intelligence certification in Delhi NCR.

 


.

How AI is used in Banking

How AI is used in Banking

Artificial Intelligence has revolutionized the banking sector, transforming back end processes into faster mechanisms, making money transfers safer and back-end operations more efficient.

From fraud detection to customer service chatbots, AI is powering several banking wings. Here is a list of operations AI has been facilitating in banks across the world.

Customer Support & Front Office

Millennials have rendered brick and mortar banks dispensable. According to Business Insider, 40 per cent of this generation does not use the services extended in physical bank offices.

AI has come to the rescue, however, by powering chatbots and voice assistants in most major financial institutions. Kasisto, for example, is one such neo-banking institution that has been using AI to the hilt.

“Kasisto’s major contribution is its conversational AI platform, KAI, which banks can use to build their own chatbots and virtual assistants. It’s rooted in AI reasoning and natural-language understanding and generation, which means it can handle sophisticated questions about finance management that other bank customer-service digital assistants…can’t”, says a report.

Kasisto has supported and shored up AI assistants for several reputed banking institutions including the UAE-based digital bank Liv., DBS Bank, Standard Chartered Bank and TD.

“The bank’s KAI-based bot walks customers through how to make international transfers, block credit card charges and transfer you to human help when the bot hits a wall.”

Fraud Protection & Middle Office

Artificial Intelligence has truly transformed “middle office functions” – where banks manage risk and protect themselves from bad actors. These functions include fraud detection, anti-money laundering initiatives and customer identity verification.

“And sometimes that means incorporating AI into legacy, rules-based anti-fraud platforms. But some the most innovative and secure countermeasures are other, from-the-ground-up models, built by companies like the ones below.”

“Up to $2 trillion is laundered every year — or five percent of the global GDP, according to UN estimates.” The sheer number of investigations across the globe, coupled with the complexity of data and reliance on human involvement makes anti-money laundering (AML) difficult work.

AML processes also cost a lot. Ayasdi’s AI-powered AML incorporates three key advancements: “intelligent segmentation, or optimizing the data-sifting process to produce the fewest number of false positives; an advanced alert system, which auto-categorizes alert priorities; and advanced transaction monitoring, which uses machine learning to spot suspicious anomalies”.

Data Science Machine Learning Certification

Lending And Risk Management

“AI holds real promise for more equitable credit underwriting — as long as practitioners remain diligent about fine-tuning the algorithms. 

Beyond credit scoring and lending, AI has also influenced the way banks assess and manage risk and how they build and interpret contracts.”

Denying credit to persons because of a class or racial bias is something that ails the banking industry across the world. ZestFinance’s“AI-based software purportedly generates fairer models, essentially by downgrading credit data that it has “learned” results in unfair decisions”.

For more on this, do peruse the DexLab Analytics website. DexLab Analytics is the premiere most artificial intelligence training institute in Gurgaon.

 


.

Call us to know more