Apache Spark Training in Delhi Archives - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Here’s All You Need to Know about Apache Spark 2.4

Here’s All You Need to Know about Apache Spark 2.4

Apache Spark 2.4 has joined the data bandwagon recently – and it is incredible. It brings experimental support for Scala 2.12. Join us as we dig into the features of the latest Spark version – what else it has to offer to our big data developers – apart from a brand new barrier execution mode supporting Databricks Runtime5.0!

Of late, as we were all busy tapping IoT revolution and latest discoveries in the domain of AI, Apache Spark rolled out a new array of exciting goodies in terms tech features to enhance the data experience for data scientists and developers. The power package is Apache Spark 2.4 – it boasts of a dozen improved features and upgrades that tackle large-scale data processing in a jiffy. Known to all, Apache Spark is a powerful analytics engine that is designed to deal with humongous volumes of data with speed and efficiency. Under the Apache Software umbrella, Spark is one of the most successful projects and the most active open source big data programs.

The latest Spark version is a combination of its erstwhile goals, such as ease of use, efficiency and speed, along with stability and refinement. On a positive note, Project Hydrogen is finally panning out as expected. Designed to ensure better coordination between big data and AI, deep learning frameworks work well. The barrier mode bolsters up better integration with distributed deep learning architecture. The present architecture of Spark is a bit intricate because elaborate communication patterns result in frequent snags and blockages.

2

However, thanks to the latest barrier execution mode, Spark can seamlessly initiate training tasks like MPI tasks and promptly restart everything when task failures occur. Also, this Spark has introduced a new process of fault tolerance for barrier tasks – whenever barrier task breaks down, Spark mindfully aborts all tasks and initiates the stage.

In addition, Spark 2.4 also comes with built-in advanced functions such as map and array. The latest high-in-order functions permit developers to tackle challenging types directly. Also, these much-improved functions have the ability to manipulate highly advanced values with an anonymous lambda function.

The new Spark offers experimental support for Scala 2.12- owing to this, the developers can now write entire Spark applications with Scala 2.12 just focusing on the 2.12 reliability. It is also equipped with improved interoperability with Java 8 resulting in better serialization of lambda functions.

This latest Spark variant also features built-in support for Apache Avro, the widely recognized data serialization format. As a result, today, the developers can write and read their Avro data within Spark itself. It first started off as a Databricks Project and today it boasts of a host of new functions and superb logical support.

Moreover, Apache Spark 2.4 highlights refined Kubernetes integration in 3 particular ways, and they are as follows:

  • Aids running containerized PySpark and SparkR on Kubernetes,
  • Client Mode is on offer,
  • A higher number of mounting options is made available for increasing Kubernetes volumes.

Besides, other improvements to be noted are:

  • Pandas UDF upgrades,
  • Prompt ascertainment of DataFrames in notebooks,
  • Elimination of 2GB-block size limitation.

Additionally, the new release supports Databricks Runtime 5.0.

Want to know more? Check out our Apache Spark training courses in Delhi. They are well curated and student-friendly. DexLab Analytics is not only touted for its best Scala training Delhi but also our Spark training courses are highly advanced and industry-relevant.

The blog has been sourced fromjaxenter.com/apache-spark-2-4-overview-151623.html

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Soaring Importance of Apache Spark in Machine Learning: Explained Here

The Soaring Importance of Apache Spark in Machine Learning: Explained Here

Apache Spark has become an essential part of operations of big technology firms, like Yahoo, Facebook, Amazon and eBay. This is mainly owing to the lightning speed offered by Apache Spark – it is the speediest engine for big data activities. The reason behind this speed: Rather than a disk, it operates on memory (RAM). Hence, data processing in Spark is even faster than in Hadoop.

The main purpose of Apache Spark is offering an integrated platform for big data processes. It also offers robust APIs in Python, Java, R and Scala. Additionally, integration with Hadoop ecosystem is very convenient.

2

Why Apache Spark for ML applications?

Many machine learning processes involve heavy computation. Distributing such processes through Apache Spark is the fastest, simplest and most efficient approach. For the needs of industrial applications, a powerful engine capable of processing data in real time, performing in batch mode and in-memory processing is vital. With Apache Spark, real-time streaming, graph processing, interactive processing and batch processing are possible through a speedy and simple interface. This is why Spark is so popular in ML applications.

Apache Spark Use Cases:

Below are some noteworthy applications of Apache Spark engine across different fields:

Entertainment: In the gaming industry, Apache Spark is used to discover patterns from the firehose of real-time gaming information and come up with swift responses in no time. Jobs like targeted advertising, player retention and auto-adjustment of complexity levels can be deployed to Spark engine.

E-commerce: In the ecommerce sector, providing recommendations in tandem with fresh trends and demands is crucial. This can be achieved because real-time data is relayed to streaming clustering algorithms such as k-means, the results from which are further merged with various unstructured data sources, like customer feedback. ML algorithms with the aid of Apache Spark process the immeasurable chunk of interactions happening between users and an e-com platform, which are expressed via complex graphs.

Finance: In finance, Apache Spark is very helpful in detecting fraud or intrusion and for authentication. When used with ML, it can study business expenses of individuals and frame suggestions the bank must give to expose customers to new products and avenues. Moreover, financial problems are indentified fast and accurately.  PayPal incorporates ML techniques like neural networks to spot unethical or fraud transactions.

Healthcare: Apache Spark is used to analyze medical history of patients and determine who is prone to which ailment in future. Moreover, to bring down processing time, Spark is applied in genomic data sequencing too.

Media: Several websites use Apache Spark together with MongoDB for better video recommendations to users, which is generated from their historical data.

ML and Apache Spark:

Many enterprises have been working with Apache Spark and ML algorithms for improved results. Yahoo, for example, uses Apache Spark along with ML algorithms to collect innovative topics than can enhance user interest. If only ML is used for this purpose, over 20, 000 lines of code in C or C++ will be needed, but with Apache Spark, the programming code is snipped at 150 lines! Another example is Netflix where Apache Spark is used for real-time streaming, providing better video recommendations to users. Streaming technology is dependent on event data, and Apache Spark ML facilities greatly improve the efficiency of video recommendations.

Spark has a separate library labelled MLib for machine learning, which includes algorithms for classification, collaborative filtering, clustering, dimensionality reduction, etc. Classification is basically sorting things into relevant categories. For example in mails, classification is done on the basis of inbox, draft, sent and so on. Many websites suggest products to users depending on their past purchases – this is collaborative filtering. Other applications offered by Apache Spark Mlib are sentiment analysis and customer segmentation.

Conclusion:

Apache Spark is a highly powerful API for machine learning applications. Its aim is wide-scale popularity of big data processing and making machine learning practical and approachable. Challenging tasks like processing massive volumes of data, both real-time and archived, are simplified through Apache Spark. Any kind of streaming and predictive analytics solution benefits hugely from its use.

If this article has piqued your interest in Apache Spark, take the next step right away and join Apache Spark training in Delhi. DexLab Analytics offers one the best Apache Spark certification in Gurgaon – experienced industry professionals train you dedicatedly, so you master this leading technology and make remarkable progress in your line of work.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Top Things to Know About Scala Programming Language

Top Things to Know About Scala Programming Language

Scalable Language, Scala is a general-purpose programming language, both object-oriented and highly functional programming language. It is easy to learn, simple and aids programmers in writing codes in a simple, sophisticated and type-safe manner. It also enables developers and programmers in being more productive.

Even though Scala is a relatively new language, it has garnered enough users and has wide community support – because it’s touted as the most user-friendly language.

About Scala and Its Features

Scala is a completely object-oriented programming language

In Scala, everything is treated as an object. Even, the operations you conduct are termed as a method call. Scala lets you add new operations to already existing classes – thanks to the implicit classes.

One of the best things about Scala is that it makes it effortlessly easy to interact with Java code. You can easily write a Java code inside Scala class – interesting, isn’t it? The Scala makes way for hi-tech component architectures with the help of classes and traits.

2

Scala is a functional language

No wonder, Scala has implemented top-notch functional programming concepts – in case you don’t know, in functional programming, each and every computation is regarded as a mathematical function. Following are the characteristics of functional programming:

  • Simplicity
  • Power and flexibility
  • Suitable for parallel processing

Not interpreted, Scala is a compiler-based language

As Scala is a compiler based language, its execution is relatively faster than its tailing competitor, Python. The latter is an interpreted language. The compiler in Scala functions just like a Java compiler. It taps the source code and launches Java byte-code that’s executable across any standard JVM (Java Virtual Machine).

Pre-requisites for Mastering Scala

Scala is a fairly simple programming language and there are minimal prerequisites for learning it. If you possess some basic knowledge of C/C++, you can easily start acing Scala. As it is developed upon Java, the fundamental programming functions of Scala are somewhat similar to Java.

Now, if you happen to know about Java syntax or OOPs concept, it would prove better for you to work in Scala.

Basic Scala Terms to Get Acquainted With

Object  

An entity which consists of state and behavior is defined as an Object. Best examples – person, table, car etc.

Class

Described as a template or a blueprint for designing different objects that reflects its behavior and properties, a Class is a widely popular term.

Method

It is reckoned as a behavior of a class, where a class may include one or more methods. For example, a deposit can be reckoned as a method of bank class.

Closure

It is defined as any function that ends within the environment in which it’s defined. A closure return value is determined based on the value of one or more variables declared outside the closure.

Traits

These are used to determine object types by mentioning the signature of the supported methods. It is similar to a Java interface.

Things to Remember About Scala

  • Scala is case sensitive
  • When saving a Scala program, use “.scala”
  • Scala execution process begins from main() methods
  • Never can an identifier name start with numbers. For an instance, the variable name “789salary” is not valid.

Now, if you are interested in understanding the intricacies and subtle nuances of Apache Spark in detail, you have to enroll for Scala certification Training Gurgaon. Such intensive Scala training programs not only help you master the programming language but ensure secure placement assistance. For more information, reach us at DexLab Analytics, a premier Scala Training Institute in Gurgaon.

 
The blog has been sourced from ― www.analyticsvidhya.com/blog/2017/01/scala
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Databricks Supports Apache Spark 2.4 and Adds ML Runtime

Databricks Supports Apache Spark 2.4 and Adds ML Runtime

Databricks recently embraced the Apache Spark 2.4, a latest version. They are integrating it into their platform of analytics. Also, the company is on its way to unveil another runtime feature that would simplify the intricacies of deep learning.

Needless to say, Databricks is one of the most powerful supporters of version 2.4 of Spark, the notable stream processing framework.  The latest upgraded version features improvement in the performance of machine learning framework running on Spark as well as distributed deep learning. It also includes modifications that would instantly address dependency issues related to deep learning tasks.

Project Hydrogen is an ambitious initiative; it’s under this tag the Spark upgrades were fused and introduced as a new scheduling mode, known as ‘barrier execution’. It encourages developers to embed training in lieu of distributed deep learning posed as an Apache Spark workload.

In context to above, Reynold Xin, a staunch Spark contributor and co-founder at Databricks said, “This is the largest change to Spark’s scheduler since the inception of the project.” He further mentioned that the upgrades will actually help reduce the complexities of machine learning structures and ensure high efficacy.

The latest runtime detail categorized HorovodRunner is developed to rationalize scaling and streamlining of distributed deep learning workloads. It is performed from a single machine to huge clusters. Previously, drifting from single-node workloads to huge distributed training on GPU or CPU clusters needed a bunch of full code rewrites – it was exceedingly challenging enough. Undeniably, HorovodRunner reduces training as well as programming time cutting down them from hours to a few minutes. This was claimed by the professionals working at Databricks.

Besides Horovod, Databricks is found to be saying that its platform offers native integration with TensorFlow, Kera and several other machine learning programs coupled with MLib and GraphFrames super machine learning algorithms.

On top of all this, a few weeks back, Databricks associated itself with a versatile cloud data integrator Talend with a sole aim to integrate the cloud service with their own data analytics platform to allow data scientists leverage the cluster computing framework – it would help process large data sets at scale.

About Apache Spark:

Apache Spark is a robust, well-integrated analytics engine efficient in processing large datasets. Crafted for high speed, productivity and generic use, it is considered as one of the most popular projects in motion under Apache software umbrella. It is also one of the most volatile and active open source big data projects.

DexLab Analytics is a top-notch Apache Spark training institute in Gurgaon. It provides top of the line in-demand skill training on a plethora of new-age IT related courses, such as data science, data analytics courses, big data, risk analytics and more.

 

The blog was sourced from ― www.datanami.com/2018/11/19/databricks-upgrades-spark-support-adds-ml-runtime

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

It’s Cracked: Now Increase Your Salary as an IT Professional

It’s Cracked: Now Increase Your Salary as an IT Professional

Keen to increase your salary – perhaps you’ve accomplished a difficult task and in a position to ask for a salary-hike? Or maybe, it’s time you want to make a switch?

Whatever be the reason, in both the abovementioned cases, the crux is a salary hike – but how to do it well? Salary negotiations are one of the toughest battle fought inside the boardrooms. Interestingly, only 39 percent of professionals even tried to negotiate a higher salary during their last job offer, says a 2018 survey of close to 3,000 people conducted by global staffing firm Robert Half.

Below, we’ve handpicked few of the best ways to enhance your salary without raising an eyebrow – scroll below for such key pieces of advice:

2

Never Lose Your Calm

Emotional intelligence is to be demonstrated. Not impatience. You are yet to get that job, and your salary negotiation skill is a reflection how you are going to do business, while remaining calm under stressful situations.

Do Your Homework

“Be confident in your own skin! Your salary negotiations can deeply suffer owing to a lack of preparation,” says Jim Johnson, senior vice president at Robert Half Technology. This firm generates an annual salary guide for more than 75 positions in IT field, with data!

In addition, Mr. Johnson supports weighing the competitiveness of your current pay. That’s important. Not only subject to your role or designation, but also to your respective skills, vertical industry and area – including security and data analytics.

Certifications Help

Today, an array of certified and non-certified in-demand skills is available in the market. As a result, IT professionals are found shelling extra pounds for these certifications – an average of 7.6 percent of base salary for a single certification and 9.4 percent of base salary on average for certain single, non-certified skills.

Amidst all, Apache Spark Progamming Training, Data Science, Cryptography and Penetration Testing are the hottest in line.  Python Course in Delhi NCR, Artificial Intelligence and Risk Analytics are next to follow.

Other than that, open source skills are quite popular – especially those that concerns DevOps, cloud and containers.

Imbibe Soft Skills As Much As You Can

Developing soft skills is an art! And in this tough age of digital transformation, IT professionals have to constantly to work in cross-functional teams with fellows from different arenas of the business, as well as clients and partners who have zero tech skills.

For this and more, you have to have a good command over English, undying patience and understand people, what they have to say! No wonder, many IT bigwigs say these soft skills are not as soft as they sound – sometimes, it’s really hard to explain and teach people from different parts of the industry.

“It’s funny that we even talk about these skills as ‘soft,’ because they are very hard to master and are frequently the cause of more trouble than lack of ‘hard’ skills,” shares Anders Wallgren, CTO at Electric Cloud.

Care to nurture your data analytics skill? The expert guys at DexLab Analytics are here!

 

The blog has first appeared on ― enterprisersproject.com/article/2018/11/what-best-way-increase-your-salary-it-professional

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Apache Spark with Machine Learning: A Combination to Digital Success

Apache Spark with Machine Learning: A Combination to Digital Success

Technology bigwigs, such as Facebook, eBay, Amazon and Yahoo are vouching for Apache Spark for its services. Why? Because, Apache Spark is reckoned to be the fastest engine for processing big data technology. Instead of a disk, Spark runs on RAM – thus is ideal for faster data processing. It offers rich API’s in Python, Scala, Java and R and is more efficient than Big Data Hadoop. The main purpose of Spark is to formulate a unified platform for big data applications so that it can easily be integrated with Hadoop ecosystem later.

2

Apache Spark: The Purpose

A raft of processes in machine learning undergoes heavy computation. Tackling these processes through Apache Spark is the best way and of course the easiest too. In a competitive industry, a pressing need always exist for an engine capable enough to process data in real time, perform in-memory processing and execute in batch mode. Apache Spark provides all this and more! Real-time streaming, in-memory processing, interactive processing, batch processing, graph processing, all powered with a fast, simple and effective interface is the USP of Apache Spark.

Practical Applications:

Entertainment

Spark is largely used in the gaming industry with an aim to identify patterns real-time and react to them without losing time. Targeted advertising, player retention and auto-adjustment of complexity in the game are few deployed tasks.

E-commerce

Real-time transaction information can be used to improve recommendation system and set new trends and demands. Unstructured data sources are useful; they include feedback from customers. Machine Learning algorithms process millions of such interactions performed by the users within an e-commerce platform – through Apache Spark.

Finance and Security

Apache Spark is ideal for fraud and intrusion detection. Across the finance and security sector, Spark coupled with Machine Learning algorithms evaluates business spending and offers necessary tools to suggest banks how to control finances – helps in finding problems within the financial industry quick and in an effective way. For example, PayPal relies on ML techniques – deep learning and neural network technologies are used the most.

Healthcare

The healthcare industry uses Spark to analyze the patient’s information based on their past health record in order to predict future health complexities. It is also used to reduce the processing time of genomic data sequencing – bonus points!

Machine Learning and Apache Spark

Companies are reaping benefits by equating Apache Spark with ML algorithms. For example, Yahoo uses a combination of these two technologies to pick out new topics which the users would find interesting. Similarly, Netflix also uses Spark+ML for real-time streaming and suggesting better online recommendation to the users, based on their user history.

The Apache Spark library has a separate library dedicated to ML, known as MLib. It consists of algorithms for the functions of regression, collaborative filtering, regression, dimensionality reduction, clustering, etc.

Last Thoughts

No wonder, Apache Spark offers a very innovative, powerful API for ML applications. Widely used for predictive analytics, fraud detection and recommendation engines, Spark swear to make ML practically easier and smoother in operations.

Are you interested in Apache Spark Progamming training in Gurgaon? DexLab Analytics is the place to be! Their incredible Spark Core training and placement assistance is probably the best in town. So, what you waiting for?!

 
The blog has been sourced fromwww.analyticsindiamag.com/how-apache-spark-became-essential-for-machine-learning
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Success Story of Big Data Tooling

The Success Story of Big Data Tooling

The world of hadoop data tooling is flourishing. It’s being said, Hadoop is shifting from possible data warehousing to an accomplished big data analytics set-up.

Back in the day, right after Hadoop at Yahoo was first invented, proponents of big data asserted its potential for substituting enterprise data warehouses, framed on business intelligence.

Open source Hadoop data tooling became a preferred choice more as an alternative to those insanely expensive existing systems – as a result, over time, the focus shifted to expanding existing data warehouses and more. Intricate Hadoop applications today are known as data lakes and of late big data tooling is found swelling beyond meager data warehouses.

“We are seeing increasing capabilities on the Hadoop and open source side to take over more and more of the corporation’s data and workloads, including BI,” said Mike Matchett, an analyst and founder of the Small World Big Data consultancy.

2

Self Service and Big Data

In August, Cloudera launched Workload XM management services designed exclusively for cloud-based analytics. Alternatively, the company built a hybrid Cloudera Data Warehouse and a Cloudera Altus Data Warehouse, capable of running over both Microsoft Azure clouds and AWS.

The main objective of management services is to bring forth some visibility into various data workloads. Workload XM is constructed to aid administrators in presenting reliable service-level agreements for self-service analytics applications – says Anupam Singh, GM of Analytics at Cloudera, Palo Alto, Calif.

Importantly, Singh also mentioned that the cloud warehouse offers encryption for data both at still and in motion, and provides a better view into the trajectory of data sets in analytics workloads. Such potentials have gained momentum and recognition as well as GDPR and other programs.

However, all these discussions boil down to one point, which is how to increase the use of big data analytics. “Customers don’t look at buzzwords like Hadoop and cloud. But they do want more business units to access the data,” he added.

Data on the Wheels

Hadoop player, Hortonworks is a Cloud aficionado. In June, the company broadened its Google Cloud existence with Google Cloud Storage support. Enhancing real-time data analytics and management is a priority.

Meanwhile, in August, Hortonworks churned out Streams Messaging Manager (SMM) with an objective of handling data streaming and provide administrators comprehensive views into Kafka messaging clusters. They have increasingly become popular amongst big data pipelines.

These management tools are crucial for moving Hadoop-inspired big data analytics into production capacities, where in data warehouses fails performing – thus, recommendation engines and fraud detection appears to be a saving grace!

Meanwhile, Kafka-related capabilities in SMM are going on getting advanced and with recently released Hortonworks DataFlow 3.2, the performance for data streaming amplified.

R Adaptability

Similar to its competitors, MapR has bolstered its capabilities beyond its original scope of being used as a mere data warehouse replacement. Early this year, the organizers released a new version of its MapR Data Platform equipped with better streaming data analytics and new item data services that would easily work on cloud as well as premises.

As final thoughts, the horizon of Hadoop is expanding, while data tooling keeps modifying. However, today, unlike before, Hadoop is not only the sole choice for doing data analytics – the choice includes Apache Spark and Machine Learning. All being extremely superior and effective when put to use.

If you are looking for Apache Spark Certification, drop by DexLab Analytics. Their Apache Spark Training program is extremely well-crafted and in sync with industry demands. For more, visit the site.

 

The article has been sourced from — searchdatamanagement.techtarget.com/news/252448331/Big-data-tooling-rolls-with-the-changing-seas-of-analytics

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

DexLab Analytics’ AUGUST OFFER: Everything You Need to Know Of

DexLab Analytics’ AUGUST OFFER: Everything You Need to Know Of

We are happy to announce that we’re rolling some good news your way – DexLab Analytics is all set to launch exhaustive modules in Deep Learning with AI starting with Artificial Neural Networks using Python, MS Excel, Dashboards, VBA Macros, Tableau BI, Visualization and Python Spark for Big Data from September 1, 2018. The course modules are on in-demand skills and they are taking the world quite by a storm.

DexLab Analytics’ AUGUST OFFER

Big data, data science and artificial intelligence are buzz words these days. More and more people are coming forward and showing keen interest on these nuanced notions that solves real-world problems. This is why we didn’t want to fall behind. We understand the importance of data in this digitized world, and accordingly have chalked out our intensive industry-ready courses.

Deep Learning and AI starting with Artificial Neural Networks using Python course module is a 30-hour long training program that gives exposure to MLP, CNN, RNN, LSTM, Theano, TensorFlow and Keras. It includes more than 8 projects out of which a couple of focuses on development of models in to Image and Text recognition. MS Excel, Dashboards and VBA Macros certification is curated by the expert consultants after combining industry expertise with academician’s knowledge. The course duration is in total of 24 hours and is conducted by seasoned professionals with more than 8 years of industry experience specific to this budding field of science.

DexLab Analytics’ August Offer is On Machine Learning & AI

DexLab Analytics’ August Offer is On Machine Learning & AI

Next, we have30-hour hands-on classroom training on Tableau BI & Visualization certification, which teaches young minds how graphical representation of data unlocks company future trends and take quicker decisions. Tableau is one of the fastest evolving BI and data visualization tool. With that in mind, we offer a learning path to all you students by framing a structured approach coupled with easy learning methodology and course curriculum.  

DexLab Analytics Offers MS Excel, Dashboards and VBA Macros Certification!

DexLab Analytics Offers MS Excel, Dashboards and VBA Macros Certification!

Lastly, our Big Data with PySpark certification is another gem in the learner’s cap: the Spark Python API (PySpark) exposes users to the Spark Programming model with Python. Apache Spark is an open source and is touted as a significant big data framework for pivoting your tasks in a cluster. The main objective of this course is to teach budding programmers how to write python code using map-reduce programming model. The 40-hours hands-on classroom training will talk about Big Data, overview of Hadoop, Python, Apache Spark, Kafka, PySpark and Machine Learning.

Now, first 12 students who happen to register for each course on or before 30th August, 2018 will get alluring discount offer on the total course fee. Interesting, isn’t it? So, what are you waiting for? Go, grab all the details about AUGUST OFFER: to register, call us at +91 9315 725 902 / +91 124 450 2444 or hit the link below – www.dexlabanalytics.com/contact

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

An ABC of Apache Spark Streaming

Estimator Procedure under Simple Random Sampling: EXPLAINED

Apache Spark has become one the most popular technologies. It is accompanied with a powerful streaming library, which has quite a few advantages over other technologies. The integration of Spark streaming APIs with Spark core APIs provides a dual purpose real-time and batch analytical platform. Spark Streaming can also be combined with SparkSQL, SparkML and GraphX when complex cases need to be handled. Famous organizations that prevalently use Spark Streaming are Netflix, Uber and Pinterest. Spark Streaming’s fame in the world of data analytics can be attributed to its fault tolerance, ability to process live streams, scalability and high throughput.

2

Need for Streaming Analytics:

Companies generate enormous amounts of data on a daily basis. Transactions happening over the internet, social network platforms, IoT devices, etc. generate large volumes of data that need to be leveraged in real-time. And this process shall gain more important in future. Entrepreneurs consider real-time data analysis as a great opportunity to scale up their businesses.

Spark streaming intakes live data streams, Spark engine processes and divides it and the output is in the form of batches.

Architecture of Spark Streaming:

Spark streaming breaks the data stream into micro batches (known as discretize stream processing). First of all, the receivers accept data in parallel and hold it in worker nodes as buffer. Then the engine runs brief tasks and sends the result to other systems.

Spark tasks are allocated to workers dynamically, that depends on the resources available and the locality of data. The advantages of Spark Streaming are many, including better load balancing and speedy fault recovery. Resilient distributed dataset (RDD) is the basic concept behind fault tolerant datasets.

Useful features of Spark streaming:

Easy to use: Spark streaming supports Java, Scala and Python and uses the language integrated API of Apache Spark for stream processing. Stream jobs can be written in a similar manner in which batch jobs are written.

Spark Integration: Since Spark streaming runs on Spark, it can be utilized for addressing unplanned queries and reusing similar codes. Robust interactive applications can also be designed.

Fault tolerance: Work that has been lost can be recovered without additional coding from the developer.

Benefits of discretized stream processing:

Load balancing: In Spark streaming, the job load is balanced across workers. While, some workers handle more time-consuming tasks, others process tasks that take less time. This is an improvement from traditional approaches where one task is processed at a time. This is because if the task is time-taking then it behaves like a bottle neck and delays the whole pipeline.

Fast recovery: In many cases of node failures, the failed operators need to be restarted on different nodes. Recomputing lost information involves rerunning a portion of the data stream. So, the pipeline gets halted until the new node catches up after the rerun. But in Spark, things work differently. Failed tasks can be restarted in parallel and the recomputations are distributed across different nodes evenly. Hence, recovery is much faster.

Spark streaming use cases:

Uber: Uber collects gigantic amounts of unstructured data from mobile users on a daily basis. This is converted to structured data and sent for real time telemetry analysis. This data is analyzed in an ETL pipeline build using Spark streaming, Kafka and HDFS.

Pinterest: To understand how Pinterest users are engaging with pins globally, it uses an ETL data pipeline to provide information to Spark through Spark streaming. Hence, Pinterest aces the game of showing related pins to people and providing relevant recommendations.

Netflix: Netflix relies on Spark streaming and Kafka to provide real-time movie recommendations to users.

Apache foundation has been inaugurating new techs, such as Spark and Hadoop. For performing real-time analytics, Spark streaming is undoubtedly one of the best options.

As businesses are swiftly embracing Apache Spark with all its perks, you as a professional might be wondering how to gain proficiency in this promising tech. DexLab Analytics, one of the leading Apache Spark training institutes in Gurgaon, offers expert guidance that is sure to make you industry-ready. To know more about Apache Spark certification courses, visit Dexlab’s website.

This article has been sources from: https://intellipaat.com/blog/a-guide-to-apache-spark-streaming-tutorial

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more