analytics training institute in Delhi Archives - Page 3 of 7 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Upskill and Upgrade: The Mantra for Budding Data Scientists

Upskill and Upgrade: The Mantra for Budding Data Scientists

Have the right skills? Then the hottest jobs of the millennium might be waiting for you! The job profiles of data analysts, data scientists, data managers and statisticians harbour great potentials.

However, the biggest challenge in today’s age lies in preparing novice graduates for Industry 4.0 jobs. Although no one has yet cleared which roles will cease to exist and which new roles will be created, the consultants have started advising students to imbibe necessary skills and up-skill in domains that are likely to influence and carve the future jobs. Becoming adaptive is the best way to sail high in the looming technology-dominated future.

Data Science and Future

In this context, data science has proved to be one of the most promising fields of technology and science that exhibits a wide gap between demand and supply yet an absolute imperative across disciplines. “Today there is no shortage of data or computing abilities but there is a shortage of workforce equipped with the right skill set that can interpret data and get valuable insights,” revealed James Abdey, assistant professorial lecturer Statistics, London School of Economics and Political Science (LSE).

He further added that data science is a multidisciplinary field – drawing collectives from Economics, Mathematics, Finance, Statistics and more.

As a matter of fact, anyone, who has the right skill and expertise, can become a data scientist. The required skills are analytical thinking, problem-solving and decision-making aptitude. “As everything becomes data-driven, acquiring analytical and statistical skill sets will soon be imperative for all students, including those pursuing Social Sciences or Liberal Arts and also for professionals,” said Jitin Chadha, founder and director, Indian School of Business and Finance (ISBF).

DexLab Analytics is one of the most prominent deep learning training institutes seated in the heart of Delhi. We offer state-of-the-art in-demand skill training courses to all the interested candidates.

The Challenges Ahead

The dearth of expert training faculty and obsolete curriculum acts as major roadblocks to the success of data science training. Such hindrances cause difficulty in preparing graduates for Industry 4.0. In this regard, Chiraag Mehta from ISBF shared that by increasing international collaborations and intensifying industry-academia connect, they can formulate an effective solution and bring forth the best practices to the classrooms. “With international collaborations, higher education institutes can bring in the latest curriculum while a deeper industry-academia connect including, guest lecturers from industry players and internships will help students relate the theory to real-world applications, ” shared Mehta during an interview with Education Times.

2

Industry 4.0: A Brief Overview

The concept Industry 4.0 encompasses the potential of a new industrial revolution – where gathering and analyzing data across machines will become the order of the day. The rise of this new digital industrial revolution is expected to facilitate faster, more flexible and efficient processes to manufacture high-quality products at reduced costs – thus, increasing productivity, switch economies, stimulate industrial growth and reform workforce profile.

Want to know more about data science courses in Gurgaon? Feel free to reach us at DexLab Analytics.

 

The blog has been sourced fromtimesofindia.indiatimes.com/home/education/news/learn-to-upskill-and-be-adaptive/articleshow/68989949.cms

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Bayes’ Theorem: A Brief Explanation

Bayes’ Theorem: A Brief Explanation

(This is in continuation of the previous blog, which was published on 22nd April, 2019 – www.dexlabanalytics.com/blog/a-beginners-guide-to-learning-data-science-fundamentals )

In this blog, we’ll try to get a hands-on understanding of the Bayes’ Theorem. While doing so, hopefully we’ll be able to grasp a basic understanding of concepts such as Prior odds ratio, Likelihood ratio and Posterior odds ratio.

Arguably, a lot of classification problems have their root in Bayes’ Theorem. Reverend T. Bayes came up with this superior logical function, which mathematically deducts the probability of an event occurring from a larger set by “flipping” the conditional probabilities.

 


 

Consider,  E1, E2, E3,……..En to be a partition a larger set “S” and now define an Event – A, such that A is a subset of S.

Let the square be the larger set “S” containing mutually exclusive events Ei’s.  Now, let the yellow ring passing through all Ei’s be an event – A.

Using conditional probabilities, we know,

Also, the relationship:

Law of total probability states:

Rearranging the values of  &  gives us the Bayes Theorem:

The values of  are also known as prior probabilities, the event A is some event, which is known to have occurred and the conditional probability   is known as the posterior probability.

Now that, you’ve got the maths behind it, it’s time to visualise its practical application. Bayesian thinking is a method of applying Bayes’ Theorem into a practical scenario to make sound judgements.

The next blog will be dedicated to Bayesian Thinking and its principles.

For now, imagine, there have been news headlines about builders snooping around houses they work in. You’ve got a builder in to work on something in your house. There is room for all sorts of bias to influence you into believing that the builder in your house is also an opportunistic thief.

However, if you were to apply Bayesian thinking, you can deduce that only a small fraction of the population are builders and of that population, a very tiny proportion is opportunistic thieves. Therefore, the probability of the builder in your house being an opportunistic thief is actually a product of the two proportions, which is indeed very-very small.

Technically speaking, we call the resulting posterior odds ratio as a product of prior odds ratio and likelihood ratio. More on applying Bayesian Thinking coming up in the next blog.

In the meantime try this exercise and leave your comments below in the comments section.

2

In the above example on “snooping builders”, what are your:

  • Ei’s
  • Event – A
  • “S”

About the Author: Nish Lau Bakshi is a professional data scientist with an actuarial background and a passion to use the power of statistics to tackle various pressing, daily life problems.

About the Institute: DexLab Analytics is a premier data analyst training institute in Gurgaon specializing in an enriching array of in-demand skill training courses for interested candidates. Skilled industry consultants craft state-of-the-art big data courses and excellent placement assistance ensures job guarantee.

For more from the tech series, stay tuned!

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Study: The Demand for Data Scientists is Likely to Rise Sharply

Study: The Demand for Data Scientists is Likely to Rise Sharply

Data is like the new oil. A large number of companies are leveraging artificial intelligence and big data to mine these vast volumes of data in today’s time. Data science is a promising landmine of job opportunities – and it’s high time to consider it as a successful career avenue.

The prospect of data science is skyrocketing. Today, it is estimated that more than 50000 data science and machine learning jobs are lying vacant. Plus, nearly 40000 new jobs are to be generated in India alone by 2020. If you follow the global trends, the role of data scientist has expanded over 650% since 2012 yet only 35000 people in the US are skilled enough.

Data scientists are like the platform that connects the dots between programming and implementation of data to solve challenging business intricacies – says Pankaj Muthe, Academic Program Manager (APAC), Company Spokesperson, QlikTech. The company delivers intuitive platform solutions for embedded analytics, self-service data visualizations and guided analytics and reporting across the globe.

According to a pool of experts, data science is the hottest job trend of this century and is the second most popular degree to have at the master level next to MBA. No wonder, this new breed of science and technology is believed to be driving a new wave of innovation! Data scientists and front-end developers attracted the highest remuneration across Indian startups throughout 2017.

2

Eligibility Criteria

To become a professional data scientist, a degree in computer science/engineering or mathematics is a must. Most of the data scientists have a knack for intricate tasks and aptitude to learn challenging programming languages. Any good organization seeks interested and intelligent candidates with the zeal to learn more. The subjects in which they need to be proficient are mathematics, statistics and programming. Moreover, data science jobs need a very sound base in machine learning algorithms, statistical modeling and neural networks as well as incredible communication skills.

Today, a lot of institutes offer state-of-the-art data science online courses that prove extremely beneficial for career growth and expansion. Combining theoretical knowledge and technical aspects of data science training, these institutes provide skill and assistance to develop real-world applications. DexLab Analytics is one such institute that is located in the heart of Delhi NCR. For more, feel free to reach us at <www.dexlabanalytics.com>

Future Prospects

After land, labour and capital, data ranks as the fourth factor of production. According to the US Department of Statistics, the demand for data engineers is likely to grow by 40% by 2020. If you are looking for a flourishing career option, this is the place to be: an entry-level engineer begins their career as a business analyst and then proceeds towards becoming a project manager. Later, after years of experience, these virgin business analysts further get promoted to become chief data officers.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Discover Top 5 Data Scientist Archetypes

Discover Top 5 Data Scientist Archetypes

Data science jobs are labelled as the hottest job of the 21st century. For the last few years, this job profile is indeed gaining accolades. And yes, that’s a good thing! Although much has been said about how to progress towards a successful career as a data scientist, little do we know about the types of data scientists you may come across in the industry! In this blog, we are going to explore the various kinds of data scientists or simply put – the data scientist archetypes found in every organization.

Generalist

This is the most common type of data scientists you find in every industry. The Generalist contains an exemplary mixture of skill and expertise in data modelling, technical engineering, data analysis and mechanics. These data scientists interact with researchers and experts in the team. They are the ones who climb up to the Tier-1 leadership teams, and we aren’t complaining!

Detective

He is the one who is prudent and puts enough emphasis on data analysis. This breed of data scientists knows how to play with the right data, incur insights and derive conclusions. The researchers say, with an absolute focus on analysis, a detective is familiar with numerous engineering and modelling techniques and methods.

Maker

The crop of data scientists who are obsessed with data engineering and architecture are known as the Makers. They know how to transform a petty idea into concrete machinery. The core attribute of a Maker is his knowledge in modelling and data mechanisms, and that’s what makes the project reach heights of success in relatively lesser time.

Enrol in one of the best data science courses in Gurgaon from DexLab Analytics.

Oracle

Having mastered the art and science of machine learning, the Oracle data scientist is rich in experience and full of expertise. Tackling the meat of the problem cracks the deal. Also called as data ninjas, these data scientists possess the right know how of how to deal with specific tools and techniques of analysis and solve crucial challenges. Elaborate experience in data modelling and engineering helps!

Unicorn

The one who runs the entire data science team and is the leader of the team is the Unicorn. A Unicorn data scientist is reckoned to be a data ninja or an expert in all aspects of data science domain and stays a toe ahead to nurture all the data science nuances and concepts. The term is basically a fusion version of all the archetypes mentioned above weaved together – the job responsibility of a data unicorn is impossible to suffice, but it’s a long road, peppered with various archetypes as a waypoint.

Organizations across the globe, including media, telecom, banking and financial institutions, market research companies, etc. are generating data of various types. These large volumes of data call for impeccable data analysis. For that, we have these data science experts – they are well-equipped with desirable data science skills and are in high demand throughout industry verticals.

Thinking of becoming a data ninja? Try data science courses in Delhi NCR: they are encompassing, on-point and industry-relevant.

 

The blog has been sourced from  ― www.analyticsindiamag.com/see-the-6-data-scientist-archetypes-you-will-find-in-every-organisation

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

What Does a Business Analyst Do: Job Responsibilities and More!

What Does a Business Analyst Do: Job Responsibilities and More!

A flamboyant, sophisticated technology lashed with a heavy stroke of sci-fi, AI and machine learning – is today’s data science. To manage, control and understand such an elusive concept, we need highly skilled data specialists – they must have mastered thoroughly the art and science of machine learning, analytics and statistics.

As the world is becoming more dynamic, the roles of data analysts and professionals are found to be increasingly inclined towards precision, versatility and eccentricity. More and more, they are expected to do things differently, posing as catalysts for change. They play an incredible role in inspiring others and bringing accuracy and accountability within an organization.

2

Data Analysts Facilitate Solutions for Stakeholders

“Business analysis involves understanding how organizations function to accomplish their purposes and defining the capabilities an organization requires to provide products and services to external stakeholders,” shares International Institute of Business Analysis in its BABOK Guide.

The main job of a business analyst is to understand the current situation of a company and facilitate a respective solution to the problem. Mostly, a team of analysts work with the stakeholders to define their business goals and extract what they expect to be delivered. They gather a long range of business-fulfilled conditions and capabilities, document them in a collection and then eventually frame and strategize a plausible solution.

Analysts Have a Multifaceted Job Role

Mostly, they wear many hats as the tasks of analysts are widely versatile and always changing. Below, we have mentioned a few most common job responsibilities they have to perform every day:

  • Understand and analyze business needs
  • Address a business problem
  • Construe information from stakeholders
  • Fulfill model requirements
  • Facilitate solutions
  • Project management
  • Project development
  • Ensure quality testing

Enjoy a smooth learning experience from a reputed analytics training institute in DelhiDexLab Analytics!

The Title ‘Business Analyst’ Hardly Matters

As a matter of fact, the title ‘business analyst’ doesn’t matter much. To fulfill the role of a ‘business analyst’, you don’t have to an analyst at the first place. Many execute the tasks as part of their existing role – data analysts, user experience specialists, change managers and process analysts – each one of them can feature business analyst behaviour.

Put simply, you don’t have to be a business analyst to do the job of a business analyst.

Business Analysts Act As Interpreters

As always, different stakeholders have different goals, needs and knowledge regarding their businesses. Stakeholders can be anyone – managers to end users, vendors to customers, developers to testers, subject matter experts, architects and more. So, it depends on the analysts to bring together all this knowledge and analyze the information gathered. This, in turn, offers a clear understanding of company goals and vision. It bridges the gap between the business and IT.

For this and more, business analysts are often compared with interpreters. Just the way the latter translates French into English – analysts too translate their stakeholders’ query and needs into a language that IT professionals can easily grasp.

Hope this comprehensive list of thoughts has helped you understand what analysts do in general!

If you want to become a data analyst or interested in the study of analytics, drop by DexLab Analytics. They are a one-stop-destination to grab data analyst certification. For more, reach us at dexlabanalytics.com

 

 The blog has been sourced from ― elabor8.com.au/what-does-a-business-analyst-actually-do

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Private Banks, Followed by E-commerce and Telecom Industry Shows High Adoption Rates for Data Analytics

Private Banks, Followed by E-commerce and Telecom Industry Shows High Adoption Rates for Data Analytics

Are you looking for a data analyst job? The chances of bagging a job at a private bank are more than that a public bank. The former is more likely to hire you than the latter.

As a matter of fact, data analytics is widely being used in the private banking and e-commerce sectors – according to a report on the state of data analytics in Indian business. The veritable report was released last month by Analytics India Magazine in association with the data science institute INSOFE. Next to banking and ecommerce, telecom and financial service sectors have started to adopt the tools of data analytics on a larger scale, the report mentioned.

The report was prepared focusing on 50 large firms across myriad sectors, namely Maruti Suzuki and Tata Motors in automobiles, ONGC and Reliance Industries under oil-drilling and refineries, Zomato and Paytm under e-commerce tab, and HDFC and the State Bank of India in banking.

2

If you follow the study closely, you will discover that in a nutshell, data analytics and data science boasts of a healthy adoption rate all throughout – 64% large Indian firms has started implementing this wonder tool at their workplaces. As a fact, if a firm is found to have an analytics penetration rate of minimum 0.75% (which means, at least one analytics professional is found out of 133 employees in a company), we can say the company has adopted analytics.

Nevertheless, the rate of adoption was not universal overall. We can see that infrastructure firms have zero adoption rates – this might be due to a lack of resources to power up a robust analytics facility or whatever. Also, steel, power and oil exhibited low adoption rates as well with not even 40% of the surveyed firms crossing the 0.75% bar. On contrary, private banks and telecom industry showed a total 100% adoption rates.

Astonishingly, public sector banks showed a 50% adoption rate- almost half of the rate in the private sector.

The study revealed more and more companies in India are looking forward to data analytics to boost sales and marketing initiatives. The tools of analytics are largely employed in the sales domain, followed by finance and operations.

Apparently, not much of the results were directly comparable with that of the last year’s study. Interestingly, one metric – analytics penetration rate – was measured last year as well, which is nothing but the ratio of analytics-oriented employees to the total. Also, last year, you would have found one out of 59 employees in an average organization, which has now reached one data analyst for every 36 employees.

For detailed information, read the full blog here: qz.com/india/1482919/banks-telcos-e-commerce-firms-hire-most-data-analysts-in-india

If you are interested in following more such interesting blogs and technology-related updates, follow DexLab Analytics, a premium analytics training institute headquartered in Gurgaon, Delhi. Grab a data analyst certification today and join the bandwagon of success.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How to Build and Maintain Successful Data Science Teams?

How to Build and Maintain Successful Data Science Teams?

Businesses are becoming smarter. They are unleashing a bigger impact. Driven by innovation and humongous volumes of data, organizations observe market trends and predict customer behavioral patterns – no wonder, this industry is the right place to incubate newer technologies and explore higher horizons.

Data science is the bull’s eye of this new-age industry. It is unabashedly predictive rather than being conclusive. As a result, garnering cross-team collaborations in this particular field of science may turn a bit challenging. A good data science team is a combination of talented professionals, high intellect, powerful body of knowledge and advanced data-tackling skills.

To give you a hand, we’ve rounded up top trends or tips to follow to get to the bottom of the art of running successful data science teams:

2

Diversity is the Key

Diverse backgrounds, on-point technical expertise and voluminous domain knowledge is what makes a data science team high on diversity. A healthy concoction of machine learning skills, knowledge in mathematics and statistics and conversational skills is critical for a productive team. Just having one or two skills is simply not enough, anymore!

Structure and Prioritize

Once you have a team by your side, you need to start structuring an operating model. The data needs to be deconstructed into sizeable prioritized slices. After that, every data-related measure should be backed by needful communication – it helps in determining the bottlenecks and devise effective solutions.

Experimentation Helps

Experimentation is crucial as well as important. Unless you experiment, you can never scale new heights and this is equally applicable in data science. In the sprawling field of data science, every project starts with a challenge and a set of hypothesis that addresses it. However, you won’t find any particular roadmap to success. Hence, it opens a lot of room for innovation and experimentation.

Collective Responsibility

Yielding data science initiatives demand absolute cooperation, collaborative responsibilities and fine reporting structures. A healthy coordination between analytics and business teams, specifically IT, is extremely important for overall business success. Data science experts need to collaborate with each other and strike a tone of success.

Data Accuracy

Gain access to data bank and fine-tune the accuracy of your analysis. Business users leverage improved functional tools of analytics for overall business success. Data is the key, and data availability and quality are the pillars on which organizations stand. Therefore, we suggest practice data accuracy for improved data analytics and boost future business goals.

Today, online resources and libraries can help you almost everything. What they cannot do is feed you is the underlying intricacies of data science and how to devise an effective solution utilizing the base knowledge of mathematics, statistics and machine learning technology. For these, you need an expert Data Science Certification – it will help you discover the grey unknown territories of data and educate you on how to tame them.

Reach us at DexLab Analytics – we offer in-demand data science courses for students and professional, both.

 

The blog has been sourced fromwww.analyticsindiamag.com/the-art-of-running-successful-data-science-teams

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Human Element Remains Critical for Enhanced Digital Customer Experience

Human Element Remains Critical for Enhanced Digital Customer Experience

Digital customer engagement and service is trending the charts. Companies are found actively focusing on establishing long-lasting relationships in sync with customer expectations to hit better results and profitable outcomes. Customers are even hopeful about businesses implementing smart digital channels to solve complex service issues and finish transactions.

70 % of customers expect companies to have a self-service option in their websites and 50% expect to solve issues concerning products or services themselves – according to Zendesk.

In this regard, below we’ve charted down a few ways to humanize the customer experience, keeping the human aspect in prime focus:

2

Adding Human Element through Brand Stories

Each brand tells a story. But, how, or in what ways do the brands tell their story to the customers? Is it through videos or texts? Brand’s history or values need to be iterated in the right voice to the right audience. Also, the companies must send a strong message saying how well they value their customers and how they always put their customers in the first place, before anything else.

Additionally, the company’s sales team should always look forward to help their customers with after-purchase information – such as how well the customers are enjoying certain features, whether any improvement is needed and more – valuable customer feedback always help at the end of the day!

AI for Feedback

Identify prospective customers who are becoming smarter day by day. This is done via continuous feedback loops along with automated continuous education. Whenever you receive feedback from a specific customer interaction, it’s advised to feed it back to their profile. An enclosed feedback loop is quite important to gain meaningful information about customers and their purchasing pattern. This is the best way to know well your customers and determine what they want and how.

Time and again, customers are asked by brands to take part in specific surveys and rate their services, describing what their feelings are about those particular products or services. All this helps comprehend customer’s satisfaction quotient regarding services, and in a way helps you take necessary action in enhancing customer experience.

Personalized Content for Customer Satisfaction

Keeping customers interested in your content is the key. Become a better story-teller and enhance customer satisfaction. Customers like it when you tell your brand’s story in your own, innovative way. But, of course, marketers face a real challenge when writing down an entertaining story, not appearing like written by agency but themselves.

A token of advice from our side – never go too rigid; be original, and try to narrate the story in an interactive way. To craft a unique brand story, the essence lies in using little wit, humor and a dash of self-effacement to add a beat to the brand.

End Notes

As parting thoughts, we would like to say always act in real-time, and better understand what your customers what and their behavioral traits. This way it would be easier to predict their next move. What’s more, your brand should be people-based and make intelligent use of customer’s available data to develop a deeper understating about your users and their respective needs.

DexLab Analytics is a prime data analyst training institute in Delhi – their data analyst training courses is as per industry standards and brimmed with practical expertise merged with theoretical knowledge. Visit the website now.

 
The blog has been sourced fromdataconomy.com/2018/08/how-to-keep-the-human-element-in-digital-customer-experience
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Best Data Science Interview Questions to Get Hired Right Away

Best Data Science Interview Questions to Get Hired Right Away

Data scientists are big data ninjas. They tackle colossal amounts of messy data, and utilize their imposing skills in statistics, mathematics and programming to collect, manage and analyze data. Next, they combine all their analytic abilities – including, industry expertise, encompassing knowledge and skepticism to unravel integral business solutions of meaningful challenges.

But how do you think they become such competent data wranglers? Years of experience or substantial pool of knowledge, or both? In this blog, we have penned down the most important interview data questions on data science – it will only aid you crack tough job interviews but also will test your knowledge about this promising field of study.

2

DexLab Analytics offers incredible Data Science Courses in Delhi. Start learning from the experts!

What do you mean by data science?

Data is a fine blend of statistics, technical expertise and business acumen. Together they are used to analyze datasets and predict the future trend.

Which is more appropriate for text analytics – R or Python?

Python includes a very versatile library, known as Pandas, which helps analysts use advanced level of data analysis tools and data structures. R doesn’t have such a feature. Therefore, Python is the one that’s highly suitable for text analytics.

Explain a Recommender System.

Today, a recommender system is extensively deployed across multiple fields – be it music recommendations, movie preferences, search queries, social tags, research and analysis – the recommender system works on a person’s past to build a model to predict future buying or movie-viewing or reading pattern in the individual.

What are the advantages of R?

  • A wide assortment of tools available for data analysis
  • Perform robust calculations on matrix and array
  • A well-developed yet simple programming language is R
  • It supports an encompassing set of machine learning applications
  • It poses as a middleman between numerous tools, software and datasets
  • Helps in developing ace reproducible analysis
  • Offers a powerful package ecosystem for versatile needs
  • Ideal for solving complex data-oriented challenges

What are the two big components of Big Data Hadoop framework?

HDFS – It is the abbreviated form of Hadoop Distributed File System. It’s the distributed database that functions over Hadoop. It stores and retrieves vast amounts of data in no time.

YARN – Stands for Yet Another Resource Negotiator. It aims to allocate resources dynamically and manage workloads.

How do you define logistic regression?

Logistic regression is nothing but a statistical technique that analyzes a dataset and forecasts significant binary outcomes. The outcome has to be in either zero or one or a yes or no.

How machine learning is used in real-life?

Following are the real-life scenarios where machine learning is used extensively:

  • Robotics
  • Finance
  • Healthcare
  • Social media
  • Ecommerce
  • Search engine
  • Information sharing
  • Medicine

What do you mean by Power Analysis?

Power analysis is best defined as the process of determining sample size required for determining an impact of a given size from a cause coupled with a certain level of assurance. It helps you understand the sample size estimate and in the process aids you in making good statistical judgments.

To get an in-depth understanding on data science, enroll for our intensive Data Science Certification – the course curriculum is industry-standard, backed by guaranteed placement assistance.

The blog has been sourced fromintellipaat.com/interview-question/data-science-interview-questions

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more