Analytics training institute Archives - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

5 Full-Stack Data Science Projects You Need to Add to Your Resume Now

5 Full-Stack Data Science Projects You Need to Add to Your Resume Now

Small or big, most of the organizations seek aspiring data scientists. The reason being this new breed of data experts helps them stay ahead of the curve and churns out industry-relevant insights.

It hardly matters if you are a fresher or a college dropout, with the right skill-set and basic understanding of nuanced concepts of machine learning, you are good to go and pursue a lucrative career in data science with a decent pay scale.

However, whenever a company hires a new data scientist, the former expects that the candidate had some prior work experience or at least have been a part in a few data science-related projects. Projects are the gateway to hone your skills and expertise in any realm.  In such projects, a budding data scientist not only learns how to develop a successful machine learning model but also solves an array of critical tasks, which needs to be fulfilled single-handedly. The tasks include preparing a problem sheet, crafting a suitable solution to the problem, collect and clean data and finally evaluate the quality of the model.

Below, we have charted down top 5 full-stack data science projects that will boost your efforts of preparing an interesting resume.

Deep Learning and AI using Python

Face Detection

In the last decade, face detection gained prominence and popularity across myriad industry domains. From smartphones to digitally unlocking your house door, this robust technology is being used at homes, offices and everywhere.

Project: Real-Time Face Recognition

Tools: OpenCV, Python

Algorithms: Convolution Neural Network and other facial detection algorithms

Spam Detection

Today, the internet plays a crucial role in our lives. Nevertheless, sharing information across the internet is no mean feat. Communication systems, such as emails, at times, contain spam, which results in decreased employee productivity and needs to be avoided.

Project: Spam Classification

Tools: Python, Matplotlib

Algorithm: NLTK

Sentiment Analysis

If you are from the Natural Language Processing and Machine Learning domain, sentiment analysis must have been the hot-trend topic. All kinds of organizations use this technology to understand customer behaviors and frame strategies. It works by combining NLP and suave machine learning technologies.

Project: Twitter Sentiment Analysis

Tools: NLTK, Python

Algorithms: Sentiment Analysis 

Time Series Prediction

Making predictions regarding the future is known as extrapolation in the classical handling of time series data. Modern researchers, however, prefer to call it time series forecasting. It is a revolutionary phenomenon of taking models perfect on historical data and using them for future prediction of observations.

Project: Web Traffic Time Series Forecasting

Tools: GCP

Algorithms: Long short-term memory (LSTM), Recurrent Neural Networks (RNN) and ARIMA-based techniques

2

Recommender Systems

Bigwigs, such as Netflix, Pandora, Amazon and LinkedIn rely on recommender systems. The latter helps users find out new and relevant content and items. In simple terms, recommender systems are algorithms that suggest users meaningful items based on his preferences and requirements.

Project: Youtube Video Recommendation System

Tools: Python, sklearn

Algorithms: Deep Neural Networks, classification algorithms

If you are a budding data scientist, follow DexLab Analytics. We are a premier data science training platform specialized in a wide array of in-demand skill training courses. For more information on data science courses in Gurgaon, feel free to drop by our website today.

 

The blog has been sourced fromwww.analyticsindiamag.com/5-simple-full-stack-data-science-projects-to-put-on-your-resume

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Top 6 Data Science Interview Red Flags

Top 6 Data Science Interview Red Flags

Excited to face your first data science interview? Probably, you must have double-checked your practical skills and theoretical knowledge. Technical interviews are tough yet interesting. Cracking them and bagging your dream job is no mean feat.

Thus, to lend you a helping hand, we’ve compiled a nifty list of some common red flags that plague data science interviews. Go through them and decide how to handle them well!

Boring Portfolio

Having a monotonous portfolio is not a crime. Nevertheless, it’s the most common allegation against data scientists by the recruiters. Given the scope, you should always exhibit your organizational and communication abilities in an interesting way to the hiring company. A well-crafted portfolio will give you instant recognition, so why not try it!

Deep Learning and AI using Python

Sloppy Code

Of course, your analytical skills, including coding is going to be put to test during any data science interview. A quick algorithm coding test will bring out the technical value you would add to the company. In such circumstances, writing a clumsy code or a code with too many bugs would be the last thing you want to do. Improving the quality of coding will accelerate your hiring process for sure.

Confusion about Job Role

No wonder if you walk up to your interviewer having no idea about your job responsibilities, your expertise and competence will be questionable. The domain of data science includes a lot of closely related job profiles. But, they differ widely in terms of skills and duties. This is why it’s very important to know your field of expertise and the skills your hiring company is looking for.

Zero Hands-on Experience

A decent, if not rich, hands-on experience in Machine Learning or Data Science projects is a requisite. Organizations prefer candidates who have some experience. The latter may include data cleaning projects, data-storytelling projects or even end-to-end data projects. So, keep this in mind. It will help you score well in the upcoming data science interview.

Lack of Knowledge over Data Science Technicalities

Data analytics, data science, machine learning and AI – are all closely associated with one another. To excel in each of these fields you need to possess high technical expertise. Being technically sound is the key. An interview can go wrong if the recruiter feels you lack command over data science technicalities, even though you have presented an excellent portfolio of projects.

Therefore, you have to be excellent in coding and harbor a vast pool of technical knowledge. Also, be updated with the latest industry trends and robust set of algorithms.

Ignoring the Basics

It happens. At times, we fumble while answering some very fundamental questions regarding our particular domain of work. However, once we come out of the interview venue, we tend to know everything. Reason: lack of presence of mind. Therefore, the key is to be confident. Don’t lose your presence of mind in the stifling interview room.

Thus, beware of these drooping gaps; being a victim of these critical objections might keep you away from bagging that dream data analyst job. Instead, work on them and win a certain edge over others while cracking the toughest data science interview session.

2

Note:

If interested in Data Science Courses in Gurgaon, check out DexLab Analytics. We are a premier training platform specialized in in-demand skills, including machine learning using Python, Alteryx and customer analytics. All our courses are industry-relevant and crafted by experts.

 

The blog has been sourced from upxacademy.com/eleven-most-common-objections-in-data-science-interviews-and-how-to-handle-them

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

What Does a Business Analyst Do: Job Responsibilities and More!

What Does a Business Analyst Do: Job Responsibilities and More!

A flamboyant, sophisticated technology lashed with a heavy stroke of sci-fi, AI and machine learning – is today’s data science. To manage, control and understand such an elusive concept, we need highly skilled data specialists – they must have mastered thoroughly the art and science of machine learning, analytics and statistics.

As the world is becoming more dynamic, the roles of data analysts and professionals are found to be increasingly inclined towards precision, versatility and eccentricity. More and more, they are expected to do things differently, posing as catalysts for change. They play an incredible role in inspiring others and bringing accuracy and accountability within an organization.

2

Data Analysts Facilitate Solutions for Stakeholders

“Business analysis involves understanding how organizations function to accomplish their purposes and defining the capabilities an organization requires to provide products and services to external stakeholders,” shares International Institute of Business Analysis in its BABOK Guide.

The main job of a business analyst is to understand the current situation of a company and facilitate a respective solution to the problem. Mostly, a team of analysts work with the stakeholders to define their business goals and extract what they expect to be delivered. They gather a long range of business-fulfilled conditions and capabilities, document them in a collection and then eventually frame and strategize a plausible solution.

Analysts Have a Multifaceted Job Role

Mostly, they wear many hats as the tasks of analysts are widely versatile and always changing. Below, we have mentioned a few most common job responsibilities they have to perform every day:

  • Understand and analyze business needs
  • Address a business problem
  • Construe information from stakeholders
  • Fulfill model requirements
  • Facilitate solutions
  • Project management
  • Project development
  • Ensure quality testing

Enjoy a smooth learning experience from a reputed analytics training institute in DelhiDexLab Analytics!

The Title ‘Business Analyst’ Hardly Matters

As a matter of fact, the title ‘business analyst’ doesn’t matter much. To fulfill the role of a ‘business analyst’, you don’t have to an analyst at the first place. Many execute the tasks as part of their existing role – data analysts, user experience specialists, change managers and process analysts – each one of them can feature business analyst behaviour.

Put simply, you don’t have to be a business analyst to do the job of a business analyst.

Business Analysts Act As Interpreters

As always, different stakeholders have different goals, needs and knowledge regarding their businesses. Stakeholders can be anyone – managers to end users, vendors to customers, developers to testers, subject matter experts, architects and more. So, it depends on the analysts to bring together all this knowledge and analyze the information gathered. This, in turn, offers a clear understanding of company goals and vision. It bridges the gap between the business and IT.

For this and more, business analysts are often compared with interpreters. Just the way the latter translates French into English – analysts too translate their stakeholders’ query and needs into a language that IT professionals can easily grasp.

Hope this comprehensive list of thoughts has helped you understand what analysts do in general!

If you want to become a data analyst or interested in the study of analytics, drop by DexLab Analytics. They are a one-stop-destination to grab data analyst certification. For more, reach us at dexlabanalytics.com

 

 The blog has been sourced from ― elabor8.com.au/what-does-a-business-analyst-actually-do

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Private Banks, Followed by E-commerce and Telecom Industry Shows High Adoption Rates for Data Analytics

Private Banks, Followed by E-commerce and Telecom Industry Shows High Adoption Rates for Data Analytics

Are you looking for a data analyst job? The chances of bagging a job at a private bank are more than that a public bank. The former is more likely to hire you than the latter.

As a matter of fact, data analytics is widely being used in the private banking and e-commerce sectors – according to a report on the state of data analytics in Indian business. The veritable report was released last month by Analytics India Magazine in association with the data science institute INSOFE. Next to banking and ecommerce, telecom and financial service sectors have started to adopt the tools of data analytics on a larger scale, the report mentioned.

The report was prepared focusing on 50 large firms across myriad sectors, namely Maruti Suzuki and Tata Motors in automobiles, ONGC and Reliance Industries under oil-drilling and refineries, Zomato and Paytm under e-commerce tab, and HDFC and the State Bank of India in banking.

2

If you follow the study closely, you will discover that in a nutshell, data analytics and data science boasts of a healthy adoption rate all throughout – 64% large Indian firms has started implementing this wonder tool at their workplaces. As a fact, if a firm is found to have an analytics penetration rate of minimum 0.75% (which means, at least one analytics professional is found out of 133 employees in a company), we can say the company has adopted analytics.

Nevertheless, the rate of adoption was not universal overall. We can see that infrastructure firms have zero adoption rates – this might be due to a lack of resources to power up a robust analytics facility or whatever. Also, steel, power and oil exhibited low adoption rates as well with not even 40% of the surveyed firms crossing the 0.75% bar. On contrary, private banks and telecom industry showed a total 100% adoption rates.

Astonishingly, public sector banks showed a 50% adoption rate- almost half of the rate in the private sector.

The study revealed more and more companies in India are looking forward to data analytics to boost sales and marketing initiatives. The tools of analytics are largely employed in the sales domain, followed by finance and operations.

Apparently, not much of the results were directly comparable with that of the last year’s study. Interestingly, one metric – analytics penetration rate – was measured last year as well, which is nothing but the ratio of analytics-oriented employees to the total. Also, last year, you would have found one out of 59 employees in an average organization, which has now reached one data analyst for every 36 employees.

For detailed information, read the full blog here: qz.com/india/1482919/banks-telcos-e-commerce-firms-hire-most-data-analysts-in-india

If you are interested in following more such interesting blogs and technology-related updates, follow DexLab Analytics, a premium analytics training institute headquartered in Gurgaon, Delhi. Grab a data analyst certification today and join the bandwagon of success.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Data Analytics Should Be Managed In Your Company, and Who Will Lead It?

How Data Analytics Should Be Managed In Your Company, and Who Will Lead It?

In the last couple of years, data management strategies have revolutionized a lot. Previously, the data management used to come under the purview of the IT department, while data analytics was performed based on business requirements. Today, a more centralized approach is being taken uniting the roles of data management and analytics – thanks to the growing prowess of predictive analytics!

Predictive analytics has brought in a significant change – it leverages data and extracts insights to enhance revenue and customer retention. However, many companies are yet to realize the power of predictive analytics. Unfortunately, data is still siloed in IT, and several departments still depend on basic calculations done by Excel.

But, of course, on a positive note, companies are shifting focus and trying to recognize the budding, robust technology. They are adopting predictive analytics and trying to leverage big data analytics. For that, they are appointing skilled data scientists, who possess the required know-how of statistical techniques and are strong on numbers.

2

Strategizing Analytical Campaigns

An enterprise-wide strategy is the key to accomplish analytical goals and how. Remember, the strategy should be encompassing and incorporate needful laws that need to be followed, like GDPR. This signifies effective data analytics strategies begin from the top.

C-suite is a priority for any company, especially which looks forward to defining data and analytics, but each company also require a designated person, who would act as a link between C-suite and the rest of the company. This is the best way to mitigate the wrong decisions and ineffective strategies that are made in silos within the organization.

Chief Data Officers, Chief Analytics Officers and Chief Technology Officers are some of the most popular new age job designations that have come up. Eminent personalities in these fetching positions play influential roles in strategizing and executing a successful corporate-level data analytics plan. The main objective of them is to provide analytical support to the business units, determine the impact of analytical strategies and ascertain and implement innovative analytical prospects.

Defensive Vs Offensive Data Strategy

To begin, defensive strategy deals with compliance with regulations, prevention of theft and fraud detection, while offensive strategy is about supporting business achievements and strategizing ways to enhance profitability, customer retention and revenue generation.

Generally, companies following a defensive data strategy operate across industries that are heavily regulated (for example, pharmaceuticals, automobile, etc.) – no doubt, they need more control on data. Thus, a well-devised data strategy has to ensure complete data security, optimize the process of data extraction and observe regulatory compliance.

On the other hand, offensive strategy requires more tactical implementation of data. Why? Because they perform in a more customer-oriented industry. Here, the analytics have to be more real-time and their numerical value will depend on how quickly they can arrive at decisions. Hence, it becomes a priority to equip the business units with analytical tools along with data. As a result, self-service BI tools turns out to be a fair deal. They are found useful. Some of the most common self-service BI vendors are Tableau and PowerBI. They are very easy to use and deliver the promises of flexibility, efficacy and user value.  

As final remarks, the sole responsibility of managing data analytics within an organization rests on a skilled team of software engineers, data analysts and data scientists. Only together, they would be able to take the charge of building successful analytical campaigns and secure the future of the company.

For R Predictive Modelling Certification, join DexLab Analytics. It’s a premier data science training platform that offers top of the line intensive courses for all data enthusiasts. For more details, visit their homepage.

 

The blog has been sourced from dataconomy.com/2018/09/who-should-own-data-analytics-in-your-company-and-why

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Citizen Data Scientists: Who Are They & What Makes Them Special?

Citizen Data Scientists: Who Are They & What Makes Them Special?

Companies across the globe are focusing their attention on data science to unlock the potentials of their data. But, what remains crucial is finding well trained data scientists for building such advanced systems.

Today, a lot many organizations are seeking citizen data scientists – though the notion isn’t something new, the practice is fairly picking up pace amongst the industries. Say thanks to a number of factors, including perpetual improvement in the quality of tools and difficulty in finding properly skilled data scientists!

Gartner, a top notch analyst firm has been promoting this virgin concept for the past few years. In 2014, the firm predicted that the total number of citizen data scientists would expand 5X faster than normal data scientists through 2017. Although we are not sure if the number forecasted panned out right but what we know is that the proliferating growth of citizen data scientists exceeded our expectations.

Recently, Gartner analyst Carlie Idoine explained a citizen data scientist is one who “creates or generates models that use advanced diagnostic analytics or predictive and prescriptive capabilities, but whose primary job function is outside the field of statistics and analytics.” They are also termed as “power users”, who’ve the ability to perform cutting edge analytical tasks that require added expertise. “They do not replace the experts, as they do not have the specific, advanced data science expertise to do so. But they certainly bring their OWN expertise and unique skills to the process,” she added.

Of late, citizen data scientists have become critical assets to an organization. They help businesses discover key big data insights and in the process are being asked to derive answers from data that’s not available from regular relational database. Obviously, data can’t be queried through SQL, either. As a result, citizen data scientists are found leveraging machine learning models that end up generating predictions from a large number of data types. No wonder, SQL always sounds effective, but Python statistical libraries and Jupyter notebooks helps you further.

 A majority of industries leverages SQL; it has been data’s lingua franca for years. The sheer knowledge of how to write a SQL query to unravel a quiver of answers out of relational databases still remains a crucial element of company’s data management system as a whole lot of business data of companies are stored in their relational databases. Nevertheless, advanced machine learning tools are widely gaining importance and acceptance.

A wide array of job titles regarding citizen data scientists exists in the real world, and some of them are mutation of business analyst job profile. Depending on an organization’s requirements, the need for experienced analysts and data scientists varies.

Looking for a good analytics training institute in Delhi? Visit DexLab Analytics.

DataRobot, a pioneering proprietary data science and machine learning automation platform developer is recently found helping citizen data scientists through the power of automation. “There’s a lot happening behind the scenes that folks don’t realize necessarily is happening,” Jen Underwood, a BI veteran and the recently hired DataRobot’s director of product marketing said. “When I was doing data science, I would run one algorithm at a time. ‘Ok let’s wait until it ends, see how it does, and try another, one at a time.’ [With DataRobot] a lot of the steps I was taking are now automated, in addition to running the algorithms concurrently and ranking them.”

To everyone’s knowledge, Big Data Analytics is progressing, capabilities that were once restricted within certain domains of professionals are now being accessible by a wider pool of interested parties. So, if you are interested in this new blooming field of opportunities, do take a look at our business analyst training courses in Gurgaon. They would surely help you in charting down a successful analyst career.

 

The blog has been sourced fromdatanami.com/2018/08/13/empowering-citizen-data-science

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Top 5 Reasons to Feel Excited about Data Analytics This Year

TOP 5 REASONS TO FEEL EXCITED ABOUT DATA ANALYTICS THIS YEAR

‘Tis the year to be super excited about data analytics! Without further ado, let’s find out why:-

Cloud Infrastructure is Expanding and Fostering Fast-paced Innovations

Considering the recent trends in cloud data and related applications, 2018 is a critical time for cloud analytics. Businesses must steadily transition to a cloud environment and for that a robust and flexible analytics strategy is to be adopted. Through cloud analytics platforms businesses can leverage common data logic and unlock new analytic capabilities to plan, predict, discover, visualize, simulate and manage. In short, what businesses need is a hybrid mode that includes data, analytics and applications spread across multi-cloud and on-premise environments. Research suggests that by employing analytics that are built to work together businesses can increase the total cost of ownership (TCO) by 3-5 times and the return on investment (ROI) can be as high as 171%.

Source: ZDNet

The Power of Machine Learning Unleashed

Machine learning and artificial intelligence have made big progress in the last one year. Hence, automated and AI powered tools are becoming central in decision-making. The rapid growth in automation has profound effect on the way analytics is used. It can be said that machine learning is perking up analytics big time. With the help of automated technologies users can develop contextual insights with ease and uncover patterns from massive volumes of data. And data scientists are harnessing these automated technologies to drive scalable insights for smarter business processes.

Source: Tech Carpenter

The Spreadsheet is Nearing Retirement

The spreadsheet has come a long way since its inception. But, for many businesses it is time to move to better alternatives that are free from some of the inefficiencies and inaccuracies of spreadsheets. For these businesses the solution is shifting to cloud-based models that help connect operational plans to financial plans.

Source: GCN.com

Customer Experience is the Current Competitive Battleground

According to the Harris Interactive study, 88% customers prefer purchasing products or services from a company that offers great customer service over a company that provides the latest innovations. Quality customer experience is crucial for business growth. And for that companies must invest in CEM (customer experience management). CEM technology collects data from varied sources and uses advanced analytics to leverage historical experiences and access data fast. This platform ensures that customers are satisfied, their grievances are addressed and there’s an improvement in sales, profits and brand image.

Source: StoryMiners

Big data Industry to Grow 7 times in 7 years!

Studies suggest that the big data industry in India is likely to become a 20 billion dollar industry by 2015. It is expected that analytics and data science market will grow by 7 times in the next 7 years. Currently, the analytics and big data industry is worth an estimated $2.71 billion in annual revenues and is growing rapidly at a rate of 33.5% CAGR.

Source: Analytics India

Do you know that this year over 16,000 freshers have been hired in the analytics workforce of India? That’s an increase by 33% from last year’s 12,000! Join the big data bandwagon with a professional certificate from this reputed data analyst training institute in Delhi. One of the unique features of this data analyst course in Gurgaon is that it includes trainers who are industry-experts in this field and hence bring with them excellent domain experience.

 

References:

digitalistmag.com/cio-knowledge/2018/01/03/top-10-trends-for-analytics-in-2018-05668659

360logica.com/blog/10-reasons-excited-data-analytics-2018

analyticsindiamag.com/analytics-data-science-industry-in-india-study-2018-by-analytixlabs-aim

getcloudcherry.com/blog/competition-customer-experience

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

FAQs before Implementing a Data Lake

FAQs before Implementing a Data Lake

Data Lake – is a term you must have encountered numerous times, while working with data. With a sudden growth in data, data lakes are seen as an attractive way of storing and analyzing vast amounts of raw data, instead of relying on traditional data warehouse method.

But, how effective is it in solving big data related problems? Or what exactly is the purpose of a data lake?

Let’s start with answering that question –

What exactly is a data lake?

To begin with, the term ‘Data Lake’ doesn’t stand for a particular service or any product, rather it’s an encompassing approach towards big data architecture that can be encapsulated as ‘store now, analyze later’. In simple language, data lakes are basically used to store unstructured or semi-structured data that is derived from high-volume, high-velocity sources in a sudden stream – in the form of IoT, web interactions or product logs in a single repository to fulfill multiple analytic functions and cases.

2

What kind of data are you handling?

Data lakes are mostly used to store streaming data, which boasts of several characteristics mentioned below:

  • Semi-structured or unstructured
  • Quicker accumulation – a common workload for streaming data is tens of billions of records leading to hundreds of terabytes
  • Being generated continuously, even though in small bursts

However, if you are working with conventional, tabular information – like data available from financial, HR and CRM systems, we would suggest you to opt for typical data warehouses, and not data lakes.

What kind of tools and skills is your organization capable enough to provide?

Take a note, creating and maintaining a data lake is not similar to handling databases. Managing a data lake asks for so much more – it would typically need huge investment in engineering, especially for hiring big data engineers, who are in high-demand and very less in numbers.

If you are an organization and lack the abovementioned resources, you should stick to a data warehouse solution until you are in a position of hiring recommended engineering talent or using data lake platforms, such as Upsolver – for streamlining the methods of creating and administering cloud data lake without devoting sprawling engineering resources for the cause.

What to do with the data?

The manner of data storage follows a specific structure that would be suitable for a certain use case, like operational reporting but the purpose for data structuring leads to higher costs and could also put a limit to your ability to restructure the same data for future uses.

This is why the tagline: store now, analyze later for data lakes sounds good. If you are yet to make your mind whether to launch a machine learning project or boost future BI analysis, a data lake would fit the bill. Or else, a data warehouse is always there as the next best alternative.

What’s your data management and governance strategy?

In terms of governance, both data warehouses and lakes pose numerous challenges – so, whichever solution you chose, make sure you know how to tackle the difficulties. In data warehousing, the potent challenge is to constantly maintain and manage all the data that comes through and adding them consistently using business logic and data model. On the other hand, data lakes are messy and difficult to maintain and manage.

Nevertheless, armed with the right data analyst certification you can decipher the right ways to hit the best out of a data lake. For more details on data analytics training courses in Gurgaon, explore DexLab Analytics.

 

The article has been sourced from — www.sisense.com/blog/5-questions-ask-implementing-data-lake

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

5 Trends Shaping the Future of Data Analytics

5 Trends Shaping the Future of Data Analytics

Data Analytics is popular. The future of data science and analytics is bright and happening. Terms like ‘artificial intelligence’ and ‘machine learning’ are taking the world by storm.

Annual demand for the fast-growing new roles of data scientist, data developers, and data engineers will reach nearly 700,000 openings by 2020, says Forbes, a leading business magazine.

 

Last year, at the DataHack Summit Kirk Borne, Principal Data Scientist and Executive Advisor at Booz Allen Hamilton shared some slivers of knowledge in the illuminating field of data science. He believes that the following trends will shape up the world of data analytics, and we can’t agree more.

Dive down to pore over a definitive list – thank us later!

Internet of Things (IoT)

Does IoT ring any bell? Yes, it does, because it’s nothing but evolved wireless networks. The market of this fascinating new breed of tech is expected to grow from $170.57 billion in 2017 to $561.04 billion by 2022 – reasons being advanced analytics and superior data processing techniques.

Artificial Intelligence

An improved version of AI is Augmented Intelligence – instead of replacing human intelligence, this new sophisticated AI program largely focuses on AI’s assistive characteristic, enhancing human intelligence. The word ‘Augmented’ stands for ‘to improve’ and together it reinforces the idea of amalgamating machine intelligence with human conscience to tackle challenges and form relationships.

Augmented Reality

Look forward to better performances and successful models? Data is the weapon of all battles. Augmented Reality is indeed a reality now. The recent launch of Apple ARkit is a pivotal development in bulk manufacturing of AR apps. The power of AR is now in the fingertips of all iPhone users, and the development of Google’s Tango is an added thrust.

Hyper Personalization

#KnowYourCustomer, it has become an indispensable part of today’s retail marketing; the better you know your customers, the higher are the chances of selling a product. Yes, you heard that right. And Google Home and Amazon Echo is boosting the ongoing operations.

Graph Analytics

Mapping relationships across wide volumes of well connected critical data is the essence of graph analytics. It’s an intricate set of analytics tools used for unlocking insightful questions and delivering more accurate results. A few use cases of graph analytics is as follows:

  • Optimizing airline and logistic routes
  • Extensive life science researches
  • Influencer analysis for social network communities
  • Crime detection, including money laundering

 
Advice: Be at the edge of data accumulation – because data is power, and data analytics is the power-device.

Calling all data enthusiasts… DexLab Analytics offers state of the art data analytics training in Gurgaon within affordable budget. Apply now and grab amazing discounts and offers on data analyst course.

 

The article has been sourced from – yourstory.com/2017/12/data-analytics-future-trends

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more