retail analytics Archives - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Retail Therapy Powered By AI

Retail Therapy Powered By AI

Retail has been one of those smart sectors that embraced the power of AI technology to offer a personalized shopping experience to the customers. Let’s have a look at how AI has been a great tool in helping the stores rake in money.

 Be it smart product recommendations by analyzing shopping patterns, or, offering better inventory management solutions today’s retailers are doing it just right. The sector needs to focus on training their employees, as undergoing customer market analysis courses is of paramount importance.

Offer personalized product recommendations

This has been one of the most revolutionary changes in the e-commerce industry. With AI-powered technology  retailers can offer personalized product recommendations to the customers. Using smart tools they can analyze the shopping preferences, shopping patterns of a customer as well as their browsing history.

The data provides them with valuable insight which they apply to recommend products following that specific customer need. By doing so, they can retain customers and experience a better conversion rate. Tools such as  Stitch Fix,  Boomtrain are carrying out this task successfully to recommend products that suit customer whimsies.

Smarter inventory management

Inventory management is one of the key areas the retailers have to focus on. Previously they would just stock up on items without having access to any valuable customer data. Now that they can sift through big data, they can analyze past trends and could predict what upcoming trends are to look out for. Being armed with data they now make decisions accordingly.

 In fact, to ensure that there is no gap in the supply chain robots are being put to use. Self-scanning robots used by Walmart could be a case in point here. These robots look for items that need restocking. Some stores are going one step further to use algorithms to analyze receipts to find out which products are in most demand and they restock accordingly.

Virtual assistants taking care of customers

Customers have no access to virtual assistants, chatbots who not only offers constant support but, also interacts with them offering personalized recommendations, as these bots are powered with NLP technology, they are more intuitive and capable of engaging with customers. In fact, with automation being available, sending a faster response to customer queries has also become more efficient. Navvi is a robot that handles customers along with handling other responsibilities.

Enabling shoppers to take immediate action

Any average person these days spends a good amount of time browsing through social media platforms, different sites which more often than not are used as advertising platforms. So, when a prospective customer finds something interesting, they check it out and then they go on to something else and later might forget about it.

But with AI-powered tools like Lens feature, they can capture the image of the product they like and search for it, thereby ensuring that they can embark on their shopping quest. This feature was initially introduced by Pinterest. With further application of deep learning for computer vision with python, there could be more developments in the field.

Taking chaos out of shopping with smart solutions

When buyers visit a store physically or, virtually they usually browse through scores of products to find what they need. Oftentimes they have difficulty locating the product they had selected online in the physical store. But, with a unique tool like Amazon Go, they can completely be at ease.

They can select the items and put in a virtual basket and when they enter the physical store they can easily track the items they had previously selected and that’s it. No complications involved and they enjoy seamless shopping experience. Zara takes a step further and deploys robots who fetch the product ordered and delivers it. 

Data Science Machine Learning Certification

Identifying prospective leads

AI has introduced some exclusive features such as face recognition, which is being now utilized by retailers to target potential leads. This is leading to a seamless merger of experience one might get in a physical and virtual store. Face recognition feature is being used to find out which products customers are spending time on in the store and based on that, recommendations are being sent online.

The shoppers are no doubt having the time of their lives enjoying this digital shopping experience, they are now able to find and buy products they need instead of wasting money on something random. The retail sector is all set to take the next big leap with AI. Retail Analytics Courses are going to be in demand as the sector needs personnel who are proficient in data handling.

 


.

Retail 4.0: How Trending Technologies Are Influencing the Retail Industry?

Retail 4.0: How Trending Technologies Are Influencing the Retail Industry?

The retail industry is undergoing unprecedented changes: courtesy Retail 4.0! It is the term used to denote the transformation that’s taking place at a rapid pace. Technological advancements and customer expectation are key driving factors behind the evolution.

Customers are the bedrock of the retail industry. They are fickle and demanding. With higher spending power and low brand loyalty, they are redefining the consumer trends and forcing retailers to harness the power of big data to ensure a seamless, positive customer experience coupled more secure payment methods and easier online store formats.

2

Data is Power

For years, retailers have been working on consumer’s behavior and how to serve them well. Today, amidst increasing competition, data explosion and advanced technological implementations, they seem to lose their erstwhile charm. Data is the answer. In a digital-enabled landscape, retail industry players need to leverage several emerging technologies, such as augmented reality, virtual reality, mixed reality, AI and Internet of Things and draw clear actionable insights.

Gone are the days when retailers relied on their instincts and formulated marketing strategies. Today, predictive analytics is used to boost informed decision-making and conclude the future success of an enterprise. Put simply, retail analytics using Python is the tool to drive optimization, follow corrective measures and reduce revenue leakage. With data at the forefront, retail analytics and its diverse platforms are providing customers with relevant products, superior service and the facility to experience the products even before purchase.

How Does It Work?

Retail analytics targets customer acquisition and focuses on customer study. Through data analysis, the retailers ascertain buying patterns and curated customer engagement strategies. For that, deep insights are generated based on their search criteria, purchase records and frequency of shopping.

Also, retailers can now predict demand precisely. Based on a customer’s historical data, they anticipate when he/she is likely to make a purchase decision and within what duration of time. They can also predict the products the customers are going to re-purchase with the help of AI. Robust machine learning algorithms deliver insights that specify accurate customer recommendations, which help increase retailers’ profit margin.

Deep Learning and AI using Python

Understanding the nuances of consumer behavior is of utmost importance. This is why IoT and AI are combined and used in monitoring customer-store interactions – resulting in better service engagements and higher revenue. Social media has added to the effect. Extracting user information from social media platforms has become a piece of cake. Retail market players can now leverage the social media data, influence customer purchase decisions and enjoy a certain edge against the tailing rivals.

As endnotes, retailers need to embrace the digital transformation and create fresh, enhanced experiences to entice the consumers. After all, the future belongs to the data-inspired companies. So, just stay ahead of the curve using data as the power tool.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more