Python Archives - Page 6 of 7 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Python Language for Embedded Applications

Python Language for Embedded Applications

Python is the need of the hour – not only for fueling websites but also for embedded applications.

Though C and C++ are still dominant programming languages for embedded applications, new age competitors, such as Python and Javascript are fast picking up pace. Especially Python: it’s gaining accolades for driving websites and Stack Overflow’s recent research has showcased the steady increase of popularity.

In terms of machine learning, Python is nowadays used with recommended platforms, such as TensorFlow and Caffe. It’s even used for fortifying neural networks.

The reason for such spiking popularity is it’s easy to download attribute – open source Python programming language can be downloaded for diverse platforms, including Windows and Linux. Moreover, several integrated development environments (IDEs) already exists for Python; some of the popular multiplatform tools are Microsoft’s Visual Studio and Eclipse (PyDev).

On the other hand, Python is reckoned as an embedded scripting language by wide motley of technical experts and consultants. Autodesk’s 3D animation program, Maya is programmed using Python. Similarly, Blender is also run on Python.

VDC Research highlighted spiked up interest in Python in IoT devices, “The embedded engineering community is embracing the use of scripting languages,” shares Chris Rommel, EVP of IoT & Embedded Technology research at VDC. “What began primarily isolated as a tool in the QA domain has quickly expanded within the software development ranks, with Python, in particular, showing incredible growth in the past few years,” he further adds.

For Python Course in Delhi NCR, DexLab Analytics is the go-to destination.

Python Graphics and User Interfaces

Python is loaded with a multitude of user-interface and graphics options. Developers, newbie and seasoned take advantage of Matplotlib: it’s a 2-D plotting library that offers a MATLAB-inspired interface. An open source KIVY framework is also used extensively. It can be run on a versatile range of platforms, such as Android,Linux, iOS, Windows, OS X, and the Raspberry Pi.

Qt is another very effective user-interface framework that’s high on popularity drive for over 25 years. Javascript, C++ and Python, all of them have relied on Qt for good. It specializes in handling graphics and different other multimedia formats as well as cameras and radios.

The Rise of Pythons for Embedded Systems

Python opens a world of opportunity, including providing support to numerous programming platforms and readable and manageable code. It eradicates the need to use brackets common to languages, such as C++, C and Java. Along with that, it enables an independent, interactive test-driven development approach.

All this sounds too alluring, isn’t it?

But wait, like all programming languages, Python too is bogged down by a few technical glitches. Running the application can sometimes become a bit tricky. Also, at times, Python may not be the perfect language for all embedded applications. Nevertheless, we cannot ignore the perks it ensures us: the benefits we derive from its dynamic nature, simplistic functions, flexibility and widespread support is incredible.

Data Science Machine Learning Certification

Of late, Python Data Science course in India is becoming increasingly popular. Join the bandwagon and get Python certified today!

 

The blog has been sourced from:

www.electronicdesign.com/embedded-revolution/python-s-big-push-embedded-space

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Python Machine Learning is the Ideal Way to Build a Recommendation System: Know Why

Python Machine Learning is the Ideal Way to Build a Recommendation System: Know Why

In recent years, recommendation systems have become very popular. Internet giants, like Google, Facebook and Amazon, use algorithms to tailor search results to customer preferences. Any system that has a search bar collects data on a customer’s past behavior and likings, which enable these platforms to provide relevant search results.

All businesses need to analyze data to give personalized recommendations. Hence, developers and data scientists are investing all their energies and mental faculties to come up with perfect recommendation systems. Many of them are of the opinion that Python Machine Learning is the best way to achieve this. Often, building a good recommendation system is considered as a ‘rite of passage’ for becoming a good data scientist!

Delving into recommendation systems:

The first step in the process of building a recommendation system is choosing its type. They are classified into the following types:

  • Recommendation based on popularity:

This is a simplistic approach, which involves recommending items that are liked by the maximum number of users. The drawback of this approach is its complete exclusion of any personalization techniques. This approach is extensively used in online news portals. But in general, it isn’t a popular choice for websites because it bases popularity on entire user pool, and this popular item is shown to everyone, irrespective of personal choice and interest.

  • Recommendation based on algorithms:

This process uses special algorithms that are tailor-made to suit every customer. They are of two types:

  • Content based algorithms:

These algorithms are based on the idea that if a person likes a product then he/she will also like a similar product.  It works efficiently when it is possible to determine the properties of each product. It is used in movie and music recommendations.

  • Collaborative filtering algorithms:

These algorithms are dependent on past behavior and not on properties of an item. For example, if a person X likes items a, b, c and another person Y likes items b, c, d, then it is concluded that they have similar interests and X should like item d and Y should like item a. Because they are not dependent on additional information, collaborative filtering algorithms are very popular. E-commerce giants, like Amazon and Flipkart, recommend products based on these algorithms.

After choosing the type of recommendation system to build, developers need to locate relevant datasets to apply to it. The next step is determining the platform where you’ll build your recommendation system. Python machine learning is the preferred platform.

Let’s Take Your Data Dreams to the Next Level

Advantages of using Python Machine Learning:

  • Code: Python makes the process of writing code extremely easy and working with algorithms becomes quite convenient. The flexible nature of this language and its efficiency in merging different types of data sets make it a popular choice for application in new operating systems.
  • Libraries: Python encompasses a wide range of libraries in multiple subjects, such as machine learning and scientific computing. The availability of a large number of functions and methods enables users to carry out several actions without having to write their own codes.
  • Community: Python includes a large community of young, bright, ambitious and helpful programmers. They are more than willing to provide their valuable inputs on different projects.
  • Open source: The best part about Python is that it is completely open source and has sufficient material available online that will help a person develop skills and learn essential tips and tricks.

Proficiency in Python is highly advantageous for anyone who wants to build a career in the field of data science. Not only does it come handy in building complicated recommendation systems, it can also be applied to many other projects. Owing to its simplicity, Python Machine Learning is a good first step for anyone who is interested in gaining knowledge of AI.

In the current data-driven world, knowing Python is a very valuable skill. If one’s aim is to collect and manipulate data in a simple and efficient manner, without having to deal with complicated codes, then Python is the standard.

For Machine Learning training in Gurgaon, join DexLab Analytics– it is the best institute to learn Machine Learning Using Python.

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Periscope Data Adds Python, R and SQL on A Single Platform for Better, Powerful Data Analysis

Periscope Data Adds Python, R and SQL on A Single Platform for Better, Powerful Data Analysis

Recently, a veteran data analytics software provider, Periscope Data announced some brand new developments while updating their Unified Data Platform for Python, R programming and Structured Query Language. This new Unified Data Platform will enable data professionals to work in sync with 3 key skills all on a single platform.  Far more better analysis will be conducted using less time by altering data in SQL, executing complex statistical analyses in Python or R, followed by improved visualization, collaboration and reporting of results – all performed on Periscope’s dynamic analytics platform.

A massive data explosion is taking place around the world around us. More than 90% of the world’s data has been created in the past two years, and the numbers are still on the rise. To this, new levels of sophistication needs to be added to analyze the complexity of data – “The addition of Python and R support to our Unified Data Platform gives our customers a unique combination of tools – from machine learning to natural language processing to predictive analytics, analysts will be able to answer new questions that have yet to be explored,” says Harry Glaser, co-founder and CEO of Periscope Data.

The inclusion of Python and R support in Periscope framework comes with ample benefits, and some of them are highlighted below:

2

All data at a single place

Instead of relying on several data sources, Periscope Data prefers to combine data together collected from various databases to bring them to a single platform, where nothing but a single source of truth for data is established. The data collected is updated and in crisp format.

Predictive analytics

It’s time to leverage Python and R libraries and move beyond the conventional historical reporting for the sake of modeling predictions. With lead scoring and churning prediction, businesses are now in a better position to derive significant insights about a future of a company.

No more switching between tools

Seamlessly, users can switch between querying data in SQL and analyzing data in R or Python, all at the same time on a same platform. Data professionals will be able to modify their datasets, enhance the performance of their models and update visualizations from a single location.

Mitigate data security concerns

The integration of R, Python and SQL by Periscope Data ensures the data professionals can run and share all sorts of models securely and in full compliance with all the norms, instead of seeking open source tools. Periscope Data is SOC2 and HIPAA compliant. It performs regular internal audits to check compliance requirements and safety issues.

Efficient collaboration with teams

As all the analysis takes place in a central location, be sure all your insights will be thoroughly consistent, secure and free of any version-control issues. Also, Periscope Data allows you and your team members the right to read and write access when required.

Easy visualization of analysis

To develop powerful visualizations that reach one’s heart and mind, leverage Periscope’s resources to the optimum levels. Data teams allow users to easily visualize through R packages and Python libraries so as to nudge users to explore the better horizons of data.

To learn more about R programming or Python, opt for Python & Spark training by DexLab Analytics. R language certification in Delhi NCR empowers students and professionals to collaborate and derive better insights faster and efficiently.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Stories of Success: Molecular Modeling Toolkit (MMTK), Open Source Python Library

Stories of Success: Molecular Modeling Toolkit (MMTK), Open Source Python Library

Welcome again!! We are back here to take up another thrilling topic and dissect it inside out to see what compelling contents are hidden within. And this time we will take up our newly launched Python Programming Training Module – Python, invented by Guido Van Rossum is a very simple, well-interpreted and goal-specific intensive programming language.

Programmers love Python. Since there is zero compilation step, debugging Python programs is a mean feat. In this blog, we will chew over The Molecular Modeling Toolkit (MMTK) – it’s an open source Python library for molecular modeling and simulation. Composed of Python and C, MMTK eyes on bio-molecular systems with its conventional standard techniques and schemes, like Molecular Dynamics coupled with new techniques based on a platform of low-level operations.

Get a Python certification today from DexLab Analytics – a premier data science with python training institute in Delhi NCR.

It was 1996, when the officials from Python Org, including Konrad Hinsen (He was then involved in the Numerical Python project, but currently working as a researcher in theoretical physics at the French Centre National de la Recherche Scientifique (CNRS). He is also the author of ScientificPython, a general-purpose library of scientific Python code) started developing MMTK. They initially had a brush off with mainstream simulation packages for biomolecules penned down by Fortran, but those packages were too clumsy to implement and especially modify and extend. In order to develop MMTK, modifiability was a crucial criterion undoubtedly and they gave it utmost attention.

groel_deformation-web

The language chosen

The selection of language took time. The combination of Python and C was an intuitive decision. The pundits of Python were convinced that only a concoction of a high-level interpreted language and a CPU-efficient compiled language could serve their purpose well, and nothing short of that.

For the high-level segment, Tcl was rejected because it won’t be able to tackle such complex data structures of MMTK. Perl was also turned down because it was made of unfriendly syntax and an ugly integrated OO mechanism. Contrary to this, Python ranked high in terms of library support, readability, OO support and integration with other compiled languages. On top of that, numerical Python was just released during that time and it turned out to be a go-to option.

Now, for the low-level segment, Fortran 77 was turned down owing to its ancient character, portability issues and low quality memory management. Next, C++ was considered, but finally it was also rejected because of portability issues between compilers in those days.

 

The architecture of library

The entire architecture of MMTK is Python-centric. For any user, it will exude the vibes of a pure Python library. Numerical Python, LAPACK, and the netCDF library functions are observed extensively throughout MMTK. Also, MMTK offers multi-threading support for MPI-based parallelization for distributed memory machines and shared memory parallel machines.

The most important constituent of MMTK is a bundle of classes that identify atoms and molecules and control a database of fragments and molecules. Take a note – biomolecules (mostly RNA, DNA and proteins) are administered by subclasses of the generic Molecule class.

Extendibility and modularity are two pillars on which Python MMTK model is based. Without going under any modification of MMTK code, several energy terms, data type specializations and algorithms can be added anytime. Because, the design element of MMTK is that of a library, and not some close program, making it easier to run applications.

Note Bene: MMTK at present includes 18,000 lines of Python code, 12,000 lines of hand-written C code, and several machine-generated C codes. Most of the codes were formulated by one person during eight years as part of a research activity. The user community provided two modules, few functions and many ideas.

For more information, peruse through Python Training Courses Noida, offered by DexLab Analytics Delhi. They are affordable, as well as program-centric.

 

This article is sourced from –  www.python.org/about/success/mmtk

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Open a World of Opportunities: Web Scraping Using PHP and Python

Open a World of Opportunities: Web Scraping Using PHP and Python

The latest estimates says, the total number of websites has crossed one billion mark; everyday a new site is being added and removed, but the record stays.

Having said that, just imagine how much data is floating around the web. The amount is so huge that it would be impossible for even hundreds of humans to digest all the information in a lifetime. To tackle such large amounts of data, you not only need to have easy access to all the information but should also process some scalable way to gather data in order to organize and analyze it. And that’s exactly where web data scraping comes into picture.

Web scraping, data mining, web data extraction, web harvesting or screen scraping – they all means the same thing – a technique in which a computer program fetches huge piles of data from a website and saves them in your computer, spreadsheet or database in a normal format for easy analysis.

2

Web Scraping with Python and BeautifulSoup

In case, you are not satisfied with the internet sources of web scraping, you are most likely to develop your very own data scraping tools, which is quite easier. In this blog we will show you how to frame a web scraper with Python and very simple yet dynamic BeautifulSoup Library:

First, import the libraries we will use: requests and BeautifulSoup:

# Import libraries
import requests
from bs4 import BeautifulSoup

Secondly, point out the variable for the URL using request.get method and gain access to the HTML content right from this page:

import requests
URL = "http://www.values.com/inspirational-quotes"
r = requests.get(URL)
print(r.content)

Next, we will parse a webpage, and for that, we need to create a BeautifulSoup object:

import requests 
from bs4 import BeautifulSoup
URL = "http://www.values.com/inspirational-quotes"
r = requests.get(URL)

 # Create a BeautifulSoup object
soup = BeautifulSoup(r.content, 'html5lib')
print(soup.prettify())

Now, let’s extract some meaningful information from HTML content. Look at the HTML content of the webpage, which was printed using the soup.pretify()method..

table = soup.find('div', attrs = {'id':'container'})

Here, you will find each quote inside a div container, belonging to the class quote.

We will repeat the process with each div container, belonging to the class quote. For that, we will use findAll()method and repeat the process with each quote using variable row.

After which, we will create a dictionary, in which all the data about the quote will be saved in a list, and is called ‘quotes’.

    quote['lines'] = row.h6.text

Now, coming to the final step – write down the data to a CSV file, but how?

See below:

filename = 'inspirational_quotes.csv'
with open(filename, 'wb') as f:
    w = csv.DictWriter(f,['theme','url','img','lines','author'])
    w.writeheader()
    for quote in quotes:
        w.writerow(quote)

This type of web scraping is used on a small-scale; for larger scale, you can consider:

Scraping Websites with PHP and Curl

To connect to a large number of servers and protocols, and download pictures, videos and graphics from several websites, consider Scraping Websites with PHP and cURL.

<?php

function curl_download($Url){

    if (!function_exists('curl_init')){
        die('cURL is not installed. Install and try again.');
    }

    $ch = curl_init();
    curl_setopt($ch, CURLOPT_URL, $Url);
    curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
    $output = curl_exec($ch);
    curl_close($ch);

    return $output;

print curl_download('http://www.gutenberg.org/browse/scores/top');

?>

In a nutshell, the scopes of using web scraping for analyzing content and applying it to your content marketing strategies are vast like the horizon. Armed by endless types of data analysis, web scraping technology has proved to be a valuable tool for the content producers. So, when are you feeding yourself with web scraping technology?

Discover the perfect platform for excellent R programming using Python courses. For more information on R programming training institute drop by DexLab Analytics.

 
This post originally appeared ondzone.com/articles/be-leading-content-provider-using-web-scraping-php
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Timeline of Artificial Intelligence and Robotics

The Timeline of Artificial Intelligence and Robotics

Cities have been constructed sprawling over the miles, heaven-piercing skyscrapers have been built, mountains have been cut across to make way for tunnels, and rivers have been redirected to erect massive dams – in less than 250 years, we propelled from primitive horse-drawn carts to autonomous cars run on highly integrated GPS systems, all because of state-of-the-art technological innovation. The internet has transformed all our lives, forever. Be it artificial intelligence or Internet of Things, they have shaped our society and amplified the pace of high-tech breakthroughs.

One of the most significant and influential developments in the field of technology is the notion of artificial intelligence. Dating back to the 5th century BC, when Greek myths of Hephaestus incorporate the idea of robots, though it couldn’t be executed till the Second World War II, artificial intelligence has indeed come a long way.

 

Come and take a look at this infographic blog to view the timeline of Artificial Intelligence:

 

Evolution of Artificial Intelligence Over the Ages from Infographics

 

In the near future, AI will become a massive sector brimming with promising financial opportunities and unabashed technological superiority. To find out more about AI and how it is going to impact our lives, read our blogs published at DexLab Analytics. We offer excellent Machine Learning training in Gurgaon for aspiring candidates, who want to know more about Machine Learning using Python.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Let’s Make Visualizations Better In Python with Matplotlib

Let’s Make Visualizations Better In Python with Matplotlib

Learn the basics of effective graphic designing and create pretty-looking plots, using matplotlib. In fact, not only matplotlib, I will try to give meaningful insights about R/ggplot2, Matlab, Excel, and any other graphing tool you use, that will help you grasp the concepts of graphic designing better.

Simplicity is the ultimate sophistication

To begin with, make sure you remember– less is more, when it is about plotting. Neophyte graphic designers sometimes think that by adding a visually appealing semi-related picture on the background of data visualization, they will make the presentation look better but eventually they are wrong. If not this, then they may also fall prey to less-influential graphic designing flaws, like using a little more of chartjunk.

 

Data always look better naked. Try to strip it down, instead of adorning it.

Have a look at the following GIF:

“Perfection is achieved not when there is nothing more to add, but when there is nothing left to take away.” – Antoine de Saint-Exupery explained it the best.

Color rules the world

The default color configuration of Matlab is quite awful. Matlab/matplotlib stalwarts may find the colors not that ugly, but it’s undeniable that Tableau’s default color configuration is way better than Matplotlib’s.

Get Tableau certification Pune today! DexLab Analytics offers Tableau BI training courses to the aspiring candidates.

Make use of established default color schemes from leading software that is famous for offering gorgeous plots. Tableau is here with its incredible set of color schemes, right from grayscale and colored to colorblind friendly.

A plenty of graphic designers forget paying heed to the issue of color blindness, which encompasses over 5% of the graphic viewers. For example, if a person suffers from red-green color blindness, it will be completely indecipherable for him to understand the difference between the two categories depicted by red and green plots. So, how will he work then?

 

For them, it is better to rely upon colorblind friendly color configurations, like Tableau’s “Color Blind 10”.

 

To run the codes, you need to install the following Python libraries:

 

  1. Matplotlib
  2. Pandas

 

Now that we are done with the fundamentals, let’s get started with the coding.

 

percent-bachelors-degrees-women-usa

 

import matplotlib.pyplot as plt
import pandas as pd

# Read the data into a pandas DataFrame.  
gender_degree_data = pd.read_csv("http://www.randalolson.com/wp-content/uploads/percent-bachelors-degrees-women-usa.csv")  

# These are the "Tableau 20" colors as RGB.  
tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),  
             (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),  
             (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),  
             (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),  
             (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]  

# Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts.  
for i in range(len(tableau20)):  
    r, g, b = tableau20[i]  
    tableau20[i] = (r / 255., g / 255., b / 255.)  

# You typically want your plot to be ~1.33x wider than tall. This plot is a rare  
# exception because of the number of lines being plotted on it.  
# Common sizes: (10, 7.5) and (12, 9)  
plt.figure(figsize=(12, 14))  

# Remove the plot frame lines. They are unnecessary chartjunk.  
ax = plt.subplot(111)  
ax.spines["top"].set_visible(False)  
ax.spines["bottom"].set_visible(False)  
ax.spines["right"].set_visible(False)  
ax.spines["left"].set_visible(False)  

# Ensure that the axis ticks only show up on the bottom and left of the plot.  
# Ticks on the right and top of the plot are generally unnecessary chartjunk.  
ax.get_xaxis().tick_bottom()  
ax.get_yaxis().tick_left()  

# Limit the range of the plot to only where the data is.  
# Avoid unnecessary whitespace.  
plt.ylim(0, 90)  
plt.xlim(1968, 2014)  

# Make sure your axis ticks are large enough to be easily read.  
# You don't want your viewers squinting to read your plot.  
plt.yticks(range(0, 91, 10), [str(x) + "%" for x in range(0, 91, 10)], fontsize=14)  
plt.xticks(fontsize=14)  

# Provide tick lines across the plot to help your viewers trace along  
# the axis ticks. Make sure that the lines are light and small so they  
# don't obscure the primary data lines.  
for y in range(10, 91, 10):  
    plt.plot(range(1968, 2012), [y] * len(range(1968, 2012)), "--", lw=0.5, color="black", alpha=0.3)  

# Remove the tick marks; they are unnecessary with the tick lines we just plotted.  
plt.tick_params(axis="both", which="both", bottom="off", top="off",  
                labelbottom="on", left="off", right="off", labelleft="on")  

# Now that the plot is prepared, it's time to actually plot the data!  
# Note that I plotted the majors in order of the highest % in the final year.  
majors = ['Health Professions', 'Public Administration', 'Education', 'Psychology',  
          'Foreign Languages', 'English', 'Communications\nand Journalism',  
          'Art and Performance', 'Biology', 'Agriculture',  
          'Social Sciences and History', 'Business', 'Math and Statistics',  
          'Architecture', 'Physical Sciences', 'Computer Science',  
          'Engineering']  

for rank, column in enumerate(majors):  
    # Plot each line separately with its own color, using the Tableau 20  
    # color set in order.  
    plt.plot(gender_degree_data.Year.values,  
            gender_degree_data[column.replace("\n", " ")].values,  
            lw=2.5, color=tableau20[rank])  

    # Add a text label to the right end of every line. Most of the code below  
    # is adding specific offsets y position because some labels overlapped.  
    y_pos = gender_degree_data[column.replace("\n", " ")].values[-1] - 0.5  
    if column == "Foreign Languages":  
        y_pos += 0.5  
    elif column == "English":  
        y_pos -= 0.5  
    elif column == "Communications\nand Journalism":  
        y_pos += 0.75  
    elif column == "Art and Performance":  
        y_pos -= 0.25  
    elif column == "Agriculture":  
        y_pos += 1.25  
    elif column == "Social Sciences and History":  
        y_pos += 0.25  
    elif column == "Business":  
        y_pos -= 0.75  
    elif column == "Math and Statistics":  
        y_pos += 0.75  
    elif column == "Architecture":  
        y_pos -= 0.75  
    elif column == "Computer Science":  
        y_pos += 0.75  
    elif column == "Engineering":  
        y_pos -= 0.25  

    # Again, make sure that all labels are large enough to be easily read  
    # by the viewer.  
    plt.text(2011.5, y_pos, column, fontsize=14, color=tableau20[rank])  

# matplotlib's title() call centers the title on the plot, but not the graph,  
# so I used the text() call to customize where the title goes.  

# Make the title big enough so it spans the entire plot, but don't make it  
# so big that it requires two lines to show.  

# Note that if the title is descriptive enough, it is unnecessary to include  
# axis labels; they are self-evident, in this plot's case.  
plt.text(1995, 93, "Percentage of Bachelor's degrees conferred to women in the U.S.A."  
       ", by major (1970-2012)", fontsize=17, ha="center")  

# Always include your data source(s) and copyright notice! And for your  
# data sources, tell your viewers exactly where the data came from,  
# preferably with a direct link to the data. Just telling your viewers  
# that you used data from the "U.S. Census Bureau" is completely useless:  
# the U.S. Census Bureau provides all kinds of data, so how are your  
# viewers supposed to know which data set you used?  
plt.text(1966, -8, "Data source: nces.ed.gov/programs/digest/2013menu_tables.asp"  
       "\nAuthor: Randy Olson (randalolson.com / @randal_olson)"  
       "\nNote: Some majors are missing because the historical data "  
       "is not available for them", fontsize=10)  

# Finally, save the figure as a PNG.  
# You can also save it as a PDF, JPEG, etc.  
# Just change the file extension in this call.  
# bbox_inches="tight" removes all the extra whitespace on the edges of your plot.  
plt.savefig("percent-bachelors-degrees-women-usa.png", bbox_inches="tight")

 

chess-number-ply-over-time
 

import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import sem

# This function takes an array of numbers and smoothes them out.
# Smoothing is useful for making plots a little easier to read.
def sliding_mean(data_array, window=5):
    data_array = array(data_array)
    new_list = []
    for i in range(len(data_array)):
        indices = range(max(i - window + 1, 0),
                        min(i + window + 1, len(data_array)))
        avg = 0
        for j in indices:
            avg += data_array[j]
        avg /= float(len(indices))
        new_list.append(avg)
        
    return array(new_list)

# Due to an agreement with the ChessGames.com admin, I cannot make the data
# for this plot publicly available. This function reads in and parses the
# chess data set into a tabulated pandas DataFrame.
chess_data = read_chess_data()

# These variables are where we put the years (x-axis), means (y-axis), and error bar values.
# We could just as easily replace the means with medians,
# and standard errors (SEMs) with standard deviations (STDs).
years = chess_data.groupby("Year").PlyCount.mean().keys()
mean_PlyCount = sliding_mean(chess_data.groupby("Year").PlyCount.mean().values,
                             window=10)
sem_PlyCount = sliding_mean(chess_data.groupby("Year").PlyCount.apply(sem).mul(1.96).values,
                            window=10)

# You typically want your plot to be ~1.33x wider than tall.
# Common sizes: (10, 7.5) and (12, 9)
plt.figure(figsize=(12, 9))

# Remove the plot frame lines. They are unnecessary chartjunk.
ax = plt.subplot(111)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)

# Ensure that the axis ticks only show up on the bottom and left of the plot.
# Ticks on the right and top of the plot are generally unnecessary chartjunk.
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()

# Limit the range of the plot to only where the data is.
# Avoid unnecessary whitespace.
plt.ylim(63, 85)

# Make sure your axis ticks are large enough to be easily read.
# You don't want your viewers squinting to read your plot.
plt.xticks(range(1850, 2011, 20), fontsize=14)
plt.yticks(range(65, 86, 5), fontsize=14)

# Along the same vein, make sure your axis labels are large
# enough to be easily read as well. Make them slightly larger
# than your axis tick labels so they stand out.
plt.ylabel("Ply per Game", fontsize=16)

# Use matplotlib's fill_between() call to create error bars.
# Use the dark blue "#3F5D7D" as a nice fill color.
plt.fill_between(years, mean_PlyCount - sem_PlyCount,
                 mean_PlyCount + sem_PlyCount, color="#3F5D7D")

# Plot the means as a white line in between the error bars. 
# White stands out best against the dark blue.
plt.plot(years, mean_PlyCount, color="white", lw=2)

# Make the title big enough so it spans the entire plot, but don't make it
# so big that it requires two lines to show.
plt.title("Chess games are getting longer", fontsize=22)

# Always include your data source(s) and copyright notice! And for your
# data sources, tell your viewers exactly where the data came from,
# preferably with a direct link to the data. Just telling your viewers
# that you used data from the "U.S. Census Bureau" is completely useless:
# the U.S. Census Bureau provides all kinds of data, so how are your
# viewers supposed to know which data set you used?
plt.xlabel("\nData source: www.ChessGames.com | "
           "Author: Randy Olson (randalolson.com / @randal_olson)", fontsize=10)

# Finally, save the figure as a PNG.
# You can also save it as a PDF, JPEG, etc.
# Just change the file extension in this call.
# bbox_inches="tight" removes all the extra whitespace on the edges of your plot.
plt.savefig("chess-number-ply-over-time.png", bbox_inches="tight");

Histograms

 
chess-elo-rating-distribution

 

import pandas as pd
import matplotlib.pyplot as plt

# Due to an agreement with the ChessGames.com admin, I cannot make the data
# for this plot publicly available. This function reads in and parses the
# chess data set into a tabulated pandas DataFrame.
chess_data = read_chess_data()

# You typically want your plot to be ~1.33x wider than tall.
# Common sizes: (10, 7.5) and (12, 9)
plt.figure(figsize=(12, 9))

# Remove the plot frame lines. They are unnecessary chartjunk.
ax = plt.subplot(111)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)

# Ensure that the axis ticks only show up on the bottom and left of the plot.
# Ticks on the right and top of the plot are generally unnecessary chartjunk.
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()

# Make sure your axis ticks are large enough to be easily read.
# You don't want your viewers squinting to read your plot.
plt.xticks(fontsize=14)
plt.yticks(range(5000, 30001, 5000), fontsize=14)

# Along the same vein, make sure your axis labels are large
# enough to be easily read as well. Make them slightly larger
# than your axis tick labels so they stand out.
plt.xlabel("Elo Rating", fontsize=16)
plt.ylabel("Count", fontsize=16)

# Plot the histogram. Note that all I'm passing here is a list of numbers.
# matplotlib automatically counts and bins the frequencies for us.
# "#3F5D7D" is the nice dark blue color.
# Make sure the data is sorted into enough bins so you can see the distribution.
plt.hist(list(chess_data.WhiteElo.values) + list(chess_data.BlackElo.values),
         color="#3F5D7D", bins=100)

# Always include your data source(s) and copyright notice! And for your
# data sources, tell your viewers exactly where the data came from,
# preferably with a direct link to the data. Just telling your viewers
# that you used data from the "U.S. Census Bureau" is completely useless:
# the U.S. Census Bureau provides all kinds of data, so how are your
# viewers supposed to know which data set you used?
plt.text(1300, -5000, "Data source: www.ChessGames.com | "
         "Author: Randy Olson (randalolson.com / @randal_olson)", fontsize=10)

# Finally, save the figure as a PNG.
# You can also save it as a PDF, JPEG, etc.
# Just change the file extension in this call.
# bbox_inches="tight" removes all the extra whitespace on the edges of your plot.
plt.savefig("chess-elo-rating-distribution.png", bbox_inches="tight");

Here Goes the Bonus

It takes one more line of code to transform your matplotlib into a phenomenal interactive.

 

 

Learn more such tutorials only at DexLab Analytics. We make data visualizations easier by providing excellent Python courses in India. In just few months, you will cover advanced topics and more, which will help you make a career in data analytics.

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Facebook is planning to evaluate its quest for generalised AI

Facebook Artificial Intelligence Researchers

A major misconception about artificial intelligence is the fact that today’s robots possess a very generalized intelligence, however, we are fairly efficient in leveraging large datasets to accomplish otherwise complex tasks. Nevertheless we still fail and fall flat at the prospect of replicating the breadth of human intelligence.

Care to contribute to AI development in today’s world? Then take up a Machine Learning course online with us. But in order to move forward a generalized intelligence, Facebook is ensure that we know how to evaluate the process. In a recently released paper, Facebook’s AI research (FAIR) lab has outlined just that as a part of its CommAI framework.

2

We will need our systems to be able to communicate and will be able to learn through language effectively even when they lack in context and discussing thing in undefined terms.

Furthermore, such systems should be capable of learning up new skills, fairly simply. As per Facebook this skill set is called “learning to learn”. Present machine learning models may be trained on data and be used for classifying defined objects. We can also make use of transfer learning to quickly adapt a model to achieve the same task on the new data, however our machines cannot completely teach themselves without heavy to moderate intervention from the developers.

It is in general agreed upon, that in order to generalize across several tasks, a program should be capable of compositional training. And that is of storing and recombination solutions to sub-problems across the different tasks, as per the team from Facebook.

As per Facebook they consider these capabilities to be of more of a prerequisite to being a generalized AI than the true Turing test. Alan Turing created the original Turing test in the 1950s. It is usually understood to be a means of assessing machine learning intelligence with respect to human intelligence.

However, with the maturation of the field of Ai the Turing test has lost a lot of its relevance. Facebook hopes to offer a nice alternative way to think about the necessary requirements of a modern generalized AI which should be less of a research distraction than the more rigid Turing Test.

The team at FAIR which include – Marco Baroni, Armand Joulin, Allan Jabri, Germán Kruszewski, Angeliki Lazaridou, Klemen Simonic and Tomas Mikolov have also developed another open source platform for the testing and training of AI systems.

For more information on Machine Learning training in Gurgaon or in Delhi NCR, drop by our institute at DexLab Analytics.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Here Are Four Predictions For AI This 2017!

Last year was the year, which saw artificial intelligence, went mainstream.

 

Here Are Four Predictions For AI This 2017!

 

By that, we do not mean just getting filtered raunchy photos on Twitter or getting the fake news suggestions on Facebook.

Here is what to look for in Artificial Intelligence for this New Year:

  • Driven by unprecedented financial support (along with a growing open source ecosystem), founders have been delivering artificial intelligence start-ups at a record high rate.
  • GE, Google, Intel, Microsoft, Facebook, Apple, Salesforce and Samsung, and several other name brands made rigorous AI investments last year.
  • There are now five million homes, which, are talking about their music and shopping choices with the help of Alexa from Amazon.
  • There is a whole new department of U.S. Department of Transportation Committee for self-driving cars. Even a few years ago, there were people talking about 2025 or so for the accessibility of self-driving cars (of level 5 autonomy), but this is a reality now, much before we could reach 2020. It is also amazing to think that self-driving cars may whittle down the 1.2 million annual deaths from automobiles.
  • Also in other interesting news, two AI unicorns just grew their horns, the Cylance in Silicon Valley and iCarbonX in China.
  • Also more than one-fifth of the MIT 50 smartest companies list, include AI as a core approach these days.

Continue reading “Here Are Four Predictions For AI This 2017!”

Call us to know more