Machine Learning Training Archives - Page 10 of 18 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Facebook and Google Have Teamed Up to Expand the Horizons of Artificial Intelligence

Facebook and Google Have Teamed Up to Expand the Horizons of Artificial Intelligence

Tech unicorns, Google and Facebook have joined hands to enhance AI experience, and take it to the next level.

Last week, the two companies revealed that quite a number of engineers are working to sync Facebook’s open source machine learning PyTorch framework with Google’s TPU, or dubbed Tensor Processing Units – the collaboration is one of its kind, and a first time where technology rivals are working on a joint project in technology.

“Today, we’re pleased to announce that engineers on Google’s TPU team are actively collaborating with core PyTorch developers to connect PyTorch to Cloud TPUs,” said Rajen Sheth, Google Cloud director of product management. “The long-term goal is to enable everyone to enjoy the simplicity and flexibility of PyTorch while benefiting from the performance, scalability, and cost-efficiency of Cloud TPUs.”

Joseph Spisak, Facebook product manager for AI added, “Engineers on Google’s Cloud TPU team are in active collaboration with our PyTorch team to enable support for PyTorch 1.0 models on this custom hardware.”

2

2016 was the year when Google first introduced its TPU to the world at the Annual Developer Conference – that year itself the search engine giant pitched the technology to different companies and researchers to support their advanced machine-learning software projects. Since then, Google has been selling access to its TPUs through its cloud computing business instead of going the conventional way of selling chips personally to customers, like Nvidia.

Over the years, AI technology, like Deep Learning have been widening its scopes and capabilities in association with tech bigwigs like Facebook and Google that have been using the robust technology to develop software applications that automatically perform intricate tasks, such as recognizing images in photos.

Since more and more companies are exploring the budding ML domain for years now, they are able to build their own AI software frameworks, mostly the coding tools that are intended to develop customized machine-learning powered software easily and effectively. Also, these companies are heard to offer incredible AI frameworks for free in open source models – the reason behind such an initiative is to popularize them amongst the coders.

For the last couple of years, Google has been on a drive to develop its TPUs to get the best with TensorFlow. Moreover, the initiative of Google to work with Facebook’s PyTorch indicates its willingness to support more than just its own AI framework. “Data scientists and machine learning engineers have a wide variety of open source tools to choose from today when it comes to developing intelligent systems,” shared Blair Hanley Frank, Principal Analyst, Information Services Group. “This announcement is a critical step to help ensure more people have access to the best hardware and software capabilities to create AI models.”

Besides Facebook and Google, Amazon and Microsoft are also expanding their AI investment through its PyTorch software.

DexLab Analytics offers top of the line machine learning training course for data enthusiasts. Their cutting edge course module on machine learning certification is one of the best in the industry – go check out their offer now!

 
The blog has been sourced from — www.dexlabanalytics.com/blog/streaming-huge-amount-of-data-with-the-best-ever-algorithm
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Best Machine Learning Questions to Crack the Toughest Job Interview

Best Machine Learning Questions to Crack the Toughest Job Interview

The robust growth of artificial intelligence has ignited a buzz of activities along the scientific community. Why not? AI has no many dimensions – including Machine Learning. Machine Learning is a dynamic field of IT– where, one gets access to data and learn from that data, resulting into massive breakthroughs in the field of marketing, fraud detection, healthcare, data security, etc.

Day by day, companies are recognizing the potentials of Machine Learning. This is why investment in this notable field is spiking up as much as the demand for skilled professionals. Machine Learning jobs are found topping the list of emerging jobs displayed on LinkedIn – the median salary of a ML professional is $106,225, which pretty much suffices for a well-paying career option.

Importantly, we’ve picked out 5 best interview questions about Machine Learning that’ll optimize your chances of getting hired. Known to all, though ML skill is in high demand, grabbing a job in this booming field of technology is no mean feat. Employers seek particular knowledge and expertise in this field to get you hired. Our 5 best interview questions will help you expand your knowledge base on ML and hone your skills ahead of time.

You can also check out our Machine Learning training course – it comprises of industry-standard course material, real life use cases and encompassing curriculum.

What is Machine Learning?

While you define the exact meaning of the term, make sure you convey your good grip over the nuanced concepts of machine learning, and its real life applications. Put simply, you must show the interviewers how well versed you are in AI and machine learning skills.

What is the difference between deductive and inductive Machine Learning?

Deductive ML begins with a conclusion, and then proceeds towards making deductions about that conclusion. Inductive ML starts from examples and ends with drawing conclusions.

How to choose an algorithm for a particular classification problem?

The answer here is subject to the degree of accuracy and the size of the training set. For a tiny training set, low variance/high bias classifier will work, and vice versa.

Name some methods of reducing dimensionality

Integrate features with feature engineering, eliminating collinear features, or use algorithmic dimensionality reduction – these procedures can definitely reduce dimensionality.

What makes classification and regression differ?

For definite answers, classification is far better a tool. It predicts class or group membership. On the other hand, regression entails prediction of a response.

What does a Kernel SVM mean?

Kernel SVM is the short form of Kernel Support Vector Machine. Kernel methods are basically a specific class of algorithms used for patter analysis and amongst them the most popular one is the Kernel SVM.

Data Science Machine Learning Certification

What do you mean by a recommendation system?

Recommendation system is a common feature for those who have worked on Spotify or shopped at Amazon. It’s an information filtering system that forecasts what a user wants to hear or see, structured on the choice patterns given by the user.

No second thoughts, these interview questions will set you on the right track to crack an interview – but, if you want to gain a deeper understanding on Machine Learning or AI, obtain Machine Learning training Gurgaon from the experts at DexLab Analytics.

 
The blog has been sourced from —

https://www.simplilearn.com/machine-learning-interview-questions-and-answers-article


.

DexLab Analytics Partnered With DU for Vishleshan’18

DexLab Analytics Partnered With DU for Visheshan’18

DexLab Analytics in association with Department of Business Economics, Delhi University proudly presented Vishleshan’18, an analytics conclave to nurture budding talent pool. Each year, Delhi University organizes an annual competition, where in data enthusiasts get an opportunity to showcase their analytical capabilities and complex problem-solving skills. This year, DexLab Analytics shared the platform with the esteemed institutional body under DU – and we can’t feel more obliged!

Our sincere gratitude and good wishes rests with the Department of Business Economics, University of Delhi; they recognized our efforts towards the data analytics community and shared interest in collaborating with us, which was indeed an honorable moment for us.

Now, coming to the event details, Analytics Conclave – Vishleshan’18 was segregated into two rounds. The first round also known as the elimination round comprised of an online quiz session, candidates were required candidates to be well-versed in all verticals of analytics. The second round was a lot more challenging, because here selected teams were allotted a case study each. In this round, DexLab Analytics played a crucial role – the seasoned consultants actively participated in structuring these all-encompassing case studies.

The case studies were all in sync with this year’s theme ‘AI and Machine Learning: Transforming Decision Making’, which means bagging the winner title was no mean feat. Various teams, all from notable institutes and in accordance to eligibility criteria (only post-graduates or MBA students allowed) participated in the contest. Out of them, only 5 teams were finally selected to present their case studies in front of a distinguished panel of judges at the DU campus on 8th September 2018.

Artificial intelligence and machine learning are driving the technology realm. Not only are they the pioneers of effective decision-making processes but also engines of faster and cheaper predictions for all big and small companies. Next to the US, India is deemed to be biggest hub of artificial intelligence, thus it’s time for prestigious Indian educational institutes, like Delhi University to start training the bright young minds for the next big boom of AI and machine learning. And that’s exactly what they were found doing.

However, as it’s said, teamwork divides the task and multiplies the success – the organizers of Vishleshan’18 approached DexLab Analytics, a leading data analytics training institute in Gurgaon, Delhi NCR. Together, they believed they would better analyze the data acumen of the participants and foster a symbiotic association for more knowledge sharing in the future.

Perhaps, not surprisingly, DexLab Analytics has created a place of its own, in the niche analytics industry. Comprehensive in-demand skill training courses are crafted keeping in mind the students’ requirements and industry demands. Moreover, the consultants who bring in considerable domain experience in the related field are all experienced and loaded with expertise. Together with you, this institute can be considered as a center of excellence in the big data analytics domain!

 

For a more detailed report, click the link below:

www.prlog.org/12728482-dexlab-analytics-is-case-study-partner-for-analytics-conclave-vishleshan-18.html  

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Machine Learning and AI is Influencing Logistics, Supply Chain & Transportation Management

How Machine Learning and AI is Influencing Logistics, Supply Chain & Transportation Management

More than 65% of top transportation professionals agree that logistics and supply chain management is in the midst of a revolution – a period of incremental transformation. And, the most potent drivers of change are none other than machine learning and artificial intelligence.

Top notch companies are already found leveraging the tools of artificial intelligence and machine learning for fine-tuning its superior strategies, including warehouse location scouting and enhancing real-time decision-making. Though these advanced technologies nurture large chunks of data, the logistic industry has for long been hoarding piles of data. Today, the difference lies in the gargantuan volume of data, as well as the existence of powerful algorithms to inspect, evaluate and trigger the process of understanding and its respective action.

Below, we will understand how AI streamlines logistics and transportation functionalities, influencing profitability and client satisfaction. Day by day, more companies are fusing Artificial Intelligence with Internet of Things to administer logistics, inventory and suppliers, backed by a certain amount of precision and acumen. Let’s delve deeper!

Predictive Maintenance

AI-powered Sensors monitor operational conditions of machines; thus can detect discrepancies even before the scheduled machine servicing based on manufacturer’s recommendation. Then they alert the technicians prior to any potential equipment failure or service disorientation. Thanks to real-time wear and tear!

For Machine Learning training course, drop by DexLab Analytics

Shipping Efficiency

Powerful algorithms are constantly used to tackle last minute developments, including picking the best alternate port in case the main port is non-operational or something like that, planning beforehand if the main carrier cancels a booking and even gauging times-of arrival.

Machine Learning capabilities are also put to use for estimating the influence of extreme weather conditions on shipping schedules. Location specific weather forecasts are integral to calculate potential delays in shipments.

Warehouse Management

Machine learning has the ability to determine inventory and dictate patterns. It ascertains the items which are selling and are to be restocked on a priority basis, and items which need sound remarketing strategy.

Voice recognition is a key tool that uses AI to ensure efficiency and accuracy through successful Warehouse Management System – a robotic voice coming out of a headset says which item to pick and from where, enabling a fast process of warehousing and dispatching of goods.

Once, the worker founds the item, he/she reads out the number labeled on them, which the system then tallies with its own processed data list through speech recognition and then confirms the picked item for the next step.  The more the system is put to use, the more trained it gets. Over time, the system learns the workers’ tone and speech patterns, resulting into better efficiency and faster work process.

Delivery

 A majority of shipping companies are competing with each other to have the most robust and efficient delivery service, because delivery is the final leg of a logistic journey. And it’s vitally important – predictive analytics is used to constantly maneuver driver routes, and plan and re-plan delivery schedules.

DHL invests on semi-autonomous vehicles that drive independently without human intervention carrying deliverables to people across urban communities. Another company, Starship Technologies, founded by the co-founders of Skype employs six-wheeled robots across London packed with hi-tech cameras and GPS. The robots are stuffed with cutting edge technology, but are controlled by humans so that they can take charge as and when required minimizing any negative outcomes.

Overall, artificial intelligence and machine learning has started augmenting human role for efficient logistics and transportation management. With all the recent developments in the technology sphere, it’s only a matter of time until AI becomes a necessary management part of supply chain.

Data Science Machine Learning Certification

And of course all this excites us to the core! If you are excited too, then please check out our brand new Machine Learning Using Python training courses. We combine theoretical knowledge merged with practical expertise to ensure students get nothing but the best!

The blog has been sourced from:

https://www.forbes.com/sites/insights-penske/2018/09/04/how-artificial-intelligence-and-machine-learning-are-revolutionizing-logistics-supply-chain-and-transportation/#eb663dd58f5d
https://aibusiness.com/streamline-supply-chain-ai
 


.

Forecasting Earthquake Aftershocks with Artificial Intelligence

Forecasting Earthquake Aftershocks with Artificial Intelligence

Recently, a study where a huge number of earthquakes were analyzed using machine-learning models, fared better at indicating the regions affected by aftershocks than traditional methods of analyzing the same.

This study puts forward new ways of analyzing how ground stress, which is caused by a massive seismic activity like earthquake, trigger aftershocks that follow. Researchers believe that this advancement in aftershock detection can open up fresh avenues for assessing seismic risks.

Phoebe DeVries, a seismologist at Harvard, believes this new research to be a demonstration of the immense opportunities that machine learning has in this field.

Contrary to the general idea that aftershocks aren’t as damaging as the main earthquake, they can actually be more devastating. As an example consider the 7.1 magnitude earthquake that shook Christchurch area in New Zealand in September 2010. It didn’t take lives but the 6.3 magnitude aftershock that occurred over 5 months later caused massive damage and took 185 lives.

2

Standard Method

Currently, the problem lies not in predicting the magnitude of aftershocks; rather seismologists find it difficult to forecast the spots where the aftershocks will hit. The traditional method used for aftershock forecasting involves calculating changes in stress of nearby rocks that’s produced by the main earthquake and using these calculations to find out the likelihood of aftershocks striking a particular area. This stress-failure process is good for defining after-shock patterns, but sometimes it fails to generate correct results.

There’s a lot of data available on previous earthquakes. DeVries and her group has used this data and applied it in machine learning models to create better predictions.

Neural Networking

Data related to over 131,000 main and after tremors were analyzed by scientists. It included some of the most destructive earthquakes, like the 9.1 magnitude quake that shook Japan in 2011. Employing this massive data set, neural networks were trained and these modeled a grid of cells that surrounded every main tremor location at a distance of 5 kilometers. Neural networks were given the signal that an earthquake had occurred and also fed in data related to the changes in stress at the centre of each grid cell. Following this, the neural networks were asked to give the probability of each cell generating aftershocks.

After testing this method for 30,000 main shocks and aftershock events, it was concluded that the neural networks forecasted the after tremor locations more accurately as compared to the stress-failure method. The networks treated each cell as an individual problem instead of calculating the overall effect of stress on the rocks. Furthermore, the ML models also implied some physical changes that occur in the ground due to the main shock and other important parameters that researchers don’t normally consider in seismic studies. One of them is the stress changes that occur in certain materials, like metals.

To conclude, it can be said that this new study is a motivating step forward in the study of seismic activities. AI and ML are breaking new grounds in every field of study. Understandably, Artificial Intelligence courses are all the rage among students wanting to leap forward in their careers. If data, numbers and forecasts interest you then this artificial intelligence certification in Delhi NCR should definitely be considered.

 

Reference: https://www.nature.com/articles/d41586-018-06091-z

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Machine Learning is Driving Out DDoS, The Latest Hazard in Cyber Security

How Machine Learning is Driving Out DDoS, The Latest Hazard in Cyber Security

It is common knowledge that the computer world is under constant threat of security breaches. Furthermore, cyber attacks are becoming more dangerous by the day. Over three trillion dollars are wasted every year owing to cyber crimes. And this huge wastage of money is likely to double by 2021. In a time where the number of internet users is increasing exponentially, it seems surreal to expect that threats can be completely eradicated.

Among a plethora of threats, the most infamous one is DDoS, which stands for distributed denial of service attack. In this malicious form of attack, normal traffic for the targeted server, network or service is disrupted by flooding it and its neighboring infrastructure with tremendous internet traffic. This new evil in cyber security has wreaked havoc with business processes.

The tech ecosystem is becoming increasingly dominated by machine learning. ML techniques provide a new approach to eradicate DDoS attacks. In this blog, we discuss a newly researched ML technique that helps restrain DDoS attacks.

SIP and VoIP

A team of researchers from University of Aegean, Greece, headed by Z Tsiatsikas, has published a study about tackling DDoS with machine learning in SIP-based VoIP systems. The popularity of VoIP systems in hardware ecosystems is the primary reason for choosing it for this study. In this age of internet, VoIP is the common choice for voice as well as multimedia communications.

Session Initiation Protocol (SIP) is the preference for initiating VoIP sessions. The basic structure of SIP/VoIP architecture has been described below:

User Agent (UA): This represents the endpoints of SIP, which are active units of the session. For example, in the case of voice communication, the caller and receiver represent endpoints for the session.

SIP Proxy Server: This entity acts both as client and server during the session. The tasks of the server are:

  • Maintaining send and receive requests
  • Transferring information between users

Registrar: Authentication processes and requests to register for UA are managed by this entity.

The VoIP provider keeps a record of the SIP communication. This is an important step as it gives out information to service providers regarding billing and accounting based activities of users. In addition to this essential data, it may also give out data about intrusion or dubious activities happening in a network. Hence, it is very important to monitor this area. If neglected, it may turn into a hotbed for DDoS attacks.

Combining ML Methods in VoIP

The researchers have employed these five standard ML algorithms in experiments:

  • Sequential minimal optimization
  • Neural networks
  • Naïve Bayes
  • Random Forest
  • Decision trees

In the experiment, communications are taken care of through these algorithms. The network is made anonymous using HMAC (keyed-hash method authentication code) and classification features are created. These algorithms are tested using 15 different DDoS attack situations. This is done using a ‘test bed’ of DDoS simulations. The design, as done by researchers, is shown below:

Image source: Analytics India

Following are some of the parameters of the experiment:

  • 3 to 4 types of Virtual Machines (VMs) have been used for SIP proxy, legitimate users, and for generating attack traffic based on the scenario.
  • Particularly for SIP proxy, popular VoIP server Kamailo (kam, 2014) has been employed.
  • sipp v.3.21 and sipsak2 tools have been employed to simulate patterns for legitimate and DoS attack traffic.
  • For simulation of DDoS attack, SIPpDD tool has also been used
  • Weka tool has been used for machine learning analysis.

Performance

Compared to non-ML detection, these algorithms perform well. Speaking from an intrusion detection viewpoint, Random Forest and decision trees work best. With the rise in attack traffic, there’s drop in the rate of intrusion detection, which signifies the presence of DDoS.

To conclude, it can be said that machine learning surpass traditional methods of detecting attacks. This latest development in cyber security is another example of the rapid progress that machine learning is bringing into every field.

Interested in joining machine learning courses in Delhi? Wait not. Contact DexLab Analytics Right Now and get yourself enrolled for the best machine learning training in Delhi.

 

This article has been sourced from: www.analyticsindiamag.com/machine-learning-chasing-out-ddos-cyber-security

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

LinkedIn Suggests How to Find Machine Learning Experts across Diverse Career Pathways

LinkedIn Suggests How to Find Machine Learning Experts across Diverse Career Pathways

Machine learning skill is fast picking up pace amongst more and more businesses. Each day, a large number of employees are being sucked into the booming field of big data analytics. But, recruiting them can be a tad bit challenging, on the part of employers. In this regard, LinkedIn recently shared some valuable data that defines the standard career path of a machine learning professional, offering insights as to how enterprises can themselves build and nurture such talent.

In the process of conducting such an intensive analysis, LinkedIn scrutinized various profiles across the globe having at least one machine learning skill listed in their profiles. The analysis of profiles spanned from April 2017 to March 2018.

The result of the analysis is interesting; it highlighted the skills the professionals share with each other and at what point of their career they need to adapt to these skills. It also sheds light on what kind of skills are developed just before machine learning – and they are data mining, R and Python, respectively.

LinkedIn has a valuable suggestion for the recruiters – it says companies can seek job candidates that have these abovementioned skills, only to develop machine learning skill later.

2

For state of art Machine Learning course in India, drop by DexLab Analytics.

Some of the other skills worthy of professionals’ interest are Java and C++ – these programming languages are gaining importance day by day.

The data given below even illustrates which industry absorbs the majority of machine learning talent. Unsurprisingly, one third of professionals powered by machine learning skill falls under higher education and research category, more than a quarter of ML professionals are from software and internet industry and the rest are scattered amongst other industry types.

Following the insights, LinkedIn suggests that enterprises should look beyond their respective industries to seek right ML candidates. According to last year’s data, 22% of people possessing ML skill changed their jobs and amongst them, 72% changed industries.

Moreover, the data helps recruiter identify the right candidate by checking out the combination of his skills as a whole and the skills a ML professional should possess. For example, ML professionals belonging from the finance and banking sector are more likely to be specialized in business analytics, Tableau and SAS, while ML professionals hailing from software industry should have a vast knowledge on a broad spectrum of programming language skills.

Future of Machine Learning

Machine learning is another flourishing branch of AI. While the early AI programs were mostly rule-based and human-dependent, the latest ones possess the striking ability to teach and formulate their own operational rules.

2017 was smashing for witnessing growth of scope and capabilities of machine learning, while 2018 harbors potential for widespread business adoption, says a research from Deloitte.

As parting thoughts, AI is nothing but tools adopted to tackle high-end business problems. Designing a proper application of machine learning includes asking the right questions to the right people to get hold of right solutions.

Interested in Machine Learning Using Python? DexLab Analytics is the go-to training institute for all data hungry souls.

 
References:

zdnet.com/article/looking-for-machine-learning-experts-linkedin-data-shows-how-to-find-them

techrepublic.com/article/machine-learning-the-smart-persons-guide
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Python Introduces New Audiences to the Exciting World of Computer Programming

How Python Introduces New Audiences to the Exciting World of Computer Programming

What was the motivation behind the birth of Python? The language has been searched by American Google users more often than Kim Kardashian in the last one year! And the rate of queries related to Python has trebled since 2010.

Dutch computer scientist, Guido van Rossum, fed up with the shortcomings in commonly used programming languages, developed Python as his Christmas project in 1989. He wanted a language that was simple to read, allowed users to create their own modules for special-purpose coding and then made this package available to others. And lastly he wanted a ‘’short, unique and slightly mysterious’’ name. He named the package after the British comedy group, Monty Python. And Cheese Shop was the chosen name for the package repository.

Nearly three decades after this ground-breaking Christmas invention, the popularity of Python is still growing. According to stats from Stack Overflow, a programming forum, approximately 40% of developers use it and 25% intend to do so. But the programming language isn’t admired by the community of developers alone; it is well-liked the public in general. According to Codecademy, a website that has taught different programming languages to over 45 million novices, Python has the highest demand. Python aficionados, known as Pythonistas, have contributed over 145,000 packages to the Cheese Shop and these cover diverse realms, such as astronomy and game development.

Image source: Economist

Decoding Python’s Fame

Python isn’t perfect. There are other languages that have higher processing efficiency and give users better control over the computer’s processor. However, Python possesses some killer features, which make it a great general purpose language. It has easy-to-learn syntax that simplifies coding. Python is a versatile platform that has a variety of applications.

 

  • The Central Intelligence Agency uses it for hacking
  • Pixar employs it for work related to films
  • Google uses it for crawling web pages
  • Spotify recommends songs with the help of Python

 

Python is also widely used for tasks that are grouped under ‘’non-technical’’. Following are some examples:

 

  • Marketers build statistical models with the help of Python to judge the effectiveness of campaigns.
  • Lecturers use it to find out if the grading system is accurate or not
  • Journalists use codes written in Python for grazing the web for data

 

Professionals who need to trawl through spreadsheets find Python highly valuable for their work. EFinancialCareers, a website dealing with jobs, has reported a fourfold increase between 2015 and 2018 in job listings that mention Python. Citigroup, the reputed American bank, organizes crash courses in Python to train newly hired analysts.

Some of the most appealing packages within the Cheese shop harness the power of AI. Mr. Van Rossum declares that Python is the preferred language for AI researchers. They use it for creating neural networks and identifying patterns from huge data sets. However, the high demand for learning Python comes with certain risks. Novices who know how to use different tools but don’t know their intricacies well are prone to make faulty conclusions without proper supervision.

One solution for this problem is to educate students from an early age. Generally, teaching programming languages is limited to STEM students in American universities. A radical proposal is to offer computer science classes to primary school children. Anticipating a future filled with automated jobs, 90% American parents have expressed desire that their children receive computer programming classes in school.

Presently, 67% of 10-12 year olds have accounts in Code.org. In university level, Python has been ranked the most popular programming language for 2014. While nobody can predict how much longer Python will keep reigning, one thing is for sure, Mr. Rossum’s Christmas invention is truly smart and purposeful.

To the dismay of Pythonistas, on 12th July 2018, he stepped down from the position of supervising the community. The reason being his discomfort with the rising fame!

Well, we hope Python’s glory continues for years to come! To read more blogs on the latest developments in the world of technology, follow DexLab Analytics. If you’re interested in mastering machine learning using Python, then you must check our machine learning courses in Delhi.

 

Reference: economist.com/science-and-technology/2018/07/19/python-has-brought-computer-programming-to-a-vast-new-audience

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

A Comprehensive Guide on the Functioning of Chatbots

A Comprehensive Guide on the Functioning of Chatbots

Chatbot is a technology that is rapidly growing and is likely to power 85% of customer service by 2020. And this is already mid 2018. Though this technology is booming, many are new to the concept of chatbots. To help such newbies, on this blog we will discuss what a chatbot really is and also talk about the different parameters related to it.

So, what is a chatbot?

A chatbot is a computer program that interacts with human users through simulated conversations using the Internet. The chatbot cannot set commands by itself. It simply provides solutions to human queries through the most natural medium of communication, which is chatting and messaging in the language of customers.

The next question that comes to our mind is-

What are the tasks that a chatbot can perform?

In this regard, it must be kept in mind that chatbots are basically programs that automate tasks. The tasks span over a variety of fields, including customer support, appointment scheduling, performing surveys and lead generation. Here are some areas of the business areas where chatbots have been very beneficial:

  1. A chatbot answers FAQs and gives the information customers want about different products and services. In short, businesses keep chatbots to handle all the customer queries. In fact, bots are able to respond to multiple queries at a time!
  2. It helps customers schedule appointments, plan trips and informs them if a product is available or not.

It has been found that companies that use the services of chatbots can save up to 60% of their time!

Why have Chatbots become the talk of town?

Most important reason for their growing popularity is that they allow the company to be present on a platform that is extensively used by customers– online. With the advent of chatbots, brands can be in the same space as their customers, without being physically present. Customers are able to interact with businesses 24/7. Thus, bots act like sales representatives online that are ready to assist customers. This directly leads to higher sales for many businesses. Moreover, chatbots respond depending on the industry it’s employed in and the customer it’s interacting with. Hence, it helps deliver personalized responses to every single user.

Working of a chatbot:

Chatbots are basically a form of AI that is developed by means of complicated programming. There are two main types of chatbots. Some chatbots function through a set of structured questions and answers and some function mainly through machine learning algorithms. The later is more complicated. However, both may look the same to users.

Scripted and structured bots: The chatbots working with structured question and answers have a limited knowledge base. Their skills are limited to correctly answering only specific questions which the bots are programmed to answer. There might be questions that aren’t included in the programming, to which the bot is likely to respond with ‘’I’m sorry, I didn’t understand the question.’’ These bots are as smart as the programming behind them permits. These types of bots are generally used for marketing in Messenger platforms. They perform tasks like sending daily mails and content pieces, generating leads, performing surveys, etc.

Source: DZone

NLP based chatbots: These bots understand language very well and deviations from the standard set of questions won’t baffle them easily. NPL (natural language processing) is a part of machine learning and the incorporation of NPL is what enables these bots to understand the nuances of language so well. Obviously, it takes a lot more work to develop these intelligent chatbots. There are three main concepts in NPL- intent, entity and utterance. Intent and entities are responsible for structuring the chatbot, whereas utterance is responsible for improving the bots with use. The best part about machine learning chatbots is that the more they are interacted with, the cleverer they become.

With the availability of free DIY chatbot platforms, chatbots can now be created without prior knowledge on coding. But, if you wish to be a pro in this field then acquire the necessary skills through the machine learning training in Gurgaon. For all the trending news on big data and related tech, follow DexLab Analytics. We are an institute that provides high-quality machine learning courses in India.

 

Reference: dzone.com/articles/here-is-a-complete-guide-of-chatbots

onlim.com/en/how-do-chatbots-work

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more