Machine Learning course online Archives - Page 5 of 11 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

AI – A Great Opportunity For Cyber Security Solutions

AI - A Great Opportunity For Cyber Security Solutions

AI and machine learning are the new rage in the computing world. And for reasons justified. With advancement in technology, the threat to technological systems and businesses online has also advanced and become more complex.

Cyber criminals are constantly coming up with newer mechanisms to break into cyber systems for theft or disruption. Thus, the cyber security industry is in a fix over what it can do to enhance security features of existing systems. AI and Machine Learning are the answer to its woes.

Artificial Intelligence and Machine Learning work on large sets of data, analyzing them and finding patterns in them. AI helps interpret data and make sense of it to yield solutions and ML learns up intuitively how to spot patterns in the data. The two go hand in hand and complement each other.

Cybersecurity solutions pivot on the science of finding and spotting patterns and planning the right response to these. They have the ability to tap into data and detect a set of code as malicious, even if no one has noticed it or flagged it before. Thus, it becomes complementary to AI in that it involves the cyber security software to be tutored to detect and alert the user about an anomaly or trigger an alarm if a corruption crosses the threshold without being prompted.  

Artificial Intelligence and Machine Learning are used in Spam Filter Applications, Network Intrusion Detection and Prevention, Fraud detection, Credit scoring, Botnet Detection, Secure User Authentication, Cyber security Ratings and Hacking Incident Forecasting.

They are much faster than human users deploying software to detect of fight cyber attacks and they do not tire unlike their human counterparts while assessing tons of data and malicious aspects of those data. They are thus not prone to desensitization that a human user would be prone to.

Application of AI in cyber security solutions is akin to taking things up a notch higher up. Without AI, cyber security would lose the option of having the software learn by itself by merely observing sets of data and user patterns.

An AI system would develop a digital fingerprint of the user based on his habits and preferences. This would help in the event of someone other than the user trying to break into his or her system. And AI cyber security systems do this work 24X7, unlike a human user who would spend limited time scanning for malicious codes or components.

Data Science Machine Learning Certification

AI and machine learning, since their inception, have transformed the world of cyber security forever. With time, both aspects of the computing world will refine and mature. It is only a matter of time before a user’s cyber security system becomes tailored to her needs.

And it is thus not surprising that more and more professionals are opting for artificial intelligence courses to equip themselves with relevant coursework. The world is moving to reap the benefits of AI intelligence. So, if you are interested in doing the same, opt for an artificial intelligence course in delhi or a Machine Learning course in India by enrolling yourself with DexLab Analytics.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Artificial Intelligence and IT Operations: A new algorithm

Artificial Intelligence and IT Operations: A new algorithm

Artificial intelligence used to automate IT operations has begun being widely termed as AIOps, a new algorithm of deep learning put to use in the field of information technology to speed up businesses and response timings to incidents occurred. It is the new rage after AI itself. And, justifiably so.

Information technology is constantly in flux, changing every minute. To keep up with it, old systems will not work. What is needed for its management is smart and fast computer programs which can keep learning and re-use learnt skills with more and more operations carried out. Trends show that worldwide spending on AI systems will hit the $77.6 billion mark in 2020, three times the amount forecasted for 2018, the IDC revealed recently.

Trends show AIOps will take centre stage when it comes to problem solving and accelerating detection of incidents and remediation.  As AIOps tools mature, IT systems will be able to work on and process a larger variety of data types in a faster and better manner, enhancing performance for more specific jobs assigned to it.

AI experts in the field say AIOps will be used to enhance and increase natural language processing, analysis of the root cause of problems, detection of anomalies, and correlation and analysis of events, among other IT functions, thus giving IT operations professionals greater control over their systems.

AI technology can help improve efficiency in vital industries like healthcare and agriculture. A case in point is the development of the Chatbot which has come to contextualize and give more intuitive and human like responses to customers.

In 2020, it is expected of IT firms to introduce data-source-agnostic solutions. This new tool will be a big boost for the industry as the more varied and variegated the data fed into an AIOps platform, the greater the insights and value the algorithms can come up with. This will directly translate to mean users can determine, more accurately, issues, foresee impacts and fathom how change can affect business-critical activities.

Data Science Machine Learning Certification

One drawback of the current AIOps systems are that they take a lot of time on-boarding and its takes time training company professionals in the use of the AI software as well as feeding the software with vast amounts of data and information. This is a challenge that will have to be met in the coming few years as more and more of the IT world is adopting AI in its systems.

The AIOps is being used increasingly in Indian IT firms as well, they recognizing the need to embrace the AI juggernaut the world has bowed down to. For artificial intelligence certification in Delhi NCR one can sign up for a course at DexLab Analytics which might have the perfect machine Learning course in India for you.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Automation is to Highly Impact the Knowledge Workers

Automation is to Highly Impact the Knowledge Workers

Automation will mainly target the knowledge workers, who are highly paid and educated and involved in thinking and analytical jobs.

The robot revolution is anticipated for quite some time now and with the ongoing advancements in Machine Learning, Artificial Intelligence and Data Science, the future is near. However, it is also one of the most dreaded events for the workers going forward, who would be vulnerable to losing their respective jobs.

Going back to the 2017 McKinsey study, around 50% of the jobs in the manufacturing industries are automatable using the latest technology. However, according to the latest report, the white-collar workers, who are well-read and engaged in thinking and analytical jobs, are more likely to suffer the most.

According to a new study conducted by Michael Webb, Stanford University Economist, the powerful technologies of computer science like Artificial Intelligence and Machine Learning, which can make human-like decisions and grow using real-time data, will eventually target the white-collar workers. Artificial Intelligence has already made marked intrusions in the white-collar jobs, like telemarketing, which are primarily overseen by the bots. However, with the tireless efforts of the Data Scientists, along with the expansion of the Machine Learning course in India, it is believed to oust the majority of the knowledge workers, like chemical engineers, market researchers, market analysts, physicists, librarians and more.

Data Science Machine Learning Certification

The new research focuses on the intersecting subject-noun pairs in AI patents and job descriptions to find out the jobs that will be heavily affected by the Ai technology. For example, the job descriptions of market research analysts comprise of “data analysis”, “identifying markets” and “track market trends”, which are in fact, all covered by the AI patents that are existing. This new study looks far more progressive than the previous ones because it analyzes patents for the technology which are yet to develop completely.

With the rising trends of Data Science and Machine Learning, Artificial Intelligence has really come a long way from what an imaginary concept. Thus, courses like Machine Learning Using Python and Python for Data Analysis, are in heavy demands. 

 

This article has been sourced fromwww.vox.com/recode/2019/11/20/20964487/white-collar-automation-risk-stanford-brookings

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Decoding Advanced Loss Functions in Machine Learning: A Comprehensive Guide

Decoding Advanced Loss Functions in Machine Learning: A Comprehensive Guide

Every Machine Learning algorithm (Model) learns by the process of optimizing the loss functions. The loss function is a method of evaluating how accurate the given prediction is made. If predictions are off, then loss function will output a higher number. If they’re pretty good, it’ll output a lower number. If someone makes changes in the algorithm to improve the model, loss function will show the path in which one should proceed.

Machine Learning is growing as fast as ever in the age we are living, with a host of comprehensive Machine Learning course in India pacing their way to usher the future. Along with this, a wide range of courses like Machine Learning Using Python, Neural Network Machine Learning Python is becoming easily accessible to the masses with the help of Machine Learning institute in Gurgaon and similar institutes.

Data Science Machine Learning Certification

We are having different types of loss functions.

  • Regression Loss Functions
  • Binary Classification Loss Functions
  • Multi-class Classification Loss Functions

Regression Loss Functions

  1. Mean Squared Error
  2. Mean Absolute Error
  3. Huber Loss Function

Binary Classification Loss Functions

  1. Binary Cross-Entropy
  2. Hinge Loss

Multi-class Classification Loss Functions

  1. Multi-class Cross Entropy Loss
  2. Kullback Leibler Divergence Loss

Mean Squared Error

Mean squared error is used to measure the average of the squared difference between predictions and actual observations. It considers the average magnitude of error irrespective of their direction.

This expression can be defined as the mean value of the squared deviations of the predicted values from that of true values. Here ‘n’ denotes the total number of samples in the data.

Mean Absolute Error

Absolute Error for each training example is the distance between the predicted and the actual values, irrespective of the sign.

MAE = | y-f(x) |

Absolute Error is also known as the L1 loss. The MAE cost is more robust to outliers as compared to MSE.

Huber Loss

Huber loss is a loss function used in robust regression. This is less sensitive to outliers in data than the squared error loss. The Huber loss function describes the penalty incurred by an estimation procedure f. Huber (1964) defines the loss function piecewise by:

This function is quadratic for small values of a, and linear for large values, with equal values and slopes of the different sections at the two points where |a|= 𝛿. The variable “a” often refers to the residuals, that is to the difference between the observed and predicted values a=y-f(x), so the former can be expanded to: –

Binary Classification Loss Functions

Binary classifications are those predictive modelling problems where examples are assigned one of two labels.

Binary Cross-Entropy

Cross-Entropy is the loss function used for binary classification problems. It is intended for use with binary classification.

Mathematically, it is the preferred loss function under the inference framework of maximum likelihood. Cross-entropy will calculate a score that summarizes the average difference between the actual and predicted probability distributions for predicting class 1. The score is minimized and a perfect cross-entropy value is 0.

Hinge Loss

The hinge loss function is popular with Support Vector Machines (SVMs). These are used for training the classifiers,

l(y) = max(0, 1- t•y)

where ‘t’ is the intended output and ‘y’ is the classifier score.

Hinge loss is convex function but is not differentiable which reduces its options for minimizing with few methods.

Multi-Class Classification Loss Functions

Multi-Class classifications are those predictive modelling problems where examples are assigned one of more than two classes.

Multi-Class Cross-Entropy

Cross-Entropy is the loss function used for multi-class classification problems. It is intended for use with multi-class classification.

Mathematically, it is the preferred loss function under the inference framework of maximum likelihood. Cross-entropy will calculate a score that summarizes the average difference between the actual and predicted probability distributions for all classes. The score is minimized and a perfect cross-entropy value is 0.

Kullback Leibler Divergence Loss

KL divergence is a natural way to measure the difference between two probability distributions.

A KL divergence loss of 0 suggests the distributions are identical. In practice, the behaviour of KL Divergence is very similar to cross-entropy. It calculates how much information is lost (in terms of bits) if the predicted probability distribution is used to approximate the desired target probability distribution.

There are also some advanced loss functions for machine learning models which are used for specific purposes.

  1. Robust Bi-Tempered Logistic Loss based on Bregman Divergences
  2. Minimax loss for GANs
  3. Focal Loss for Dense Object Detection
  4. Intersection over Union (IoU)-balanced Loss Functions for Single-stage Object Detection
  5. Boundary loss for highly unbalanced segmentation
  6. Perceptual Loss Function

Robust Bi-Tempered Logistic Loss based on Bregman Divergences

In this loss function, we introduce a temperature into the exponential function and replace the softmax output layer of the neural networks by a high-temperature generalization. Similarly, the logarithm in the loss we use for training is replaced by a low-temperature logarithm. By tuning the two temperatures, we create loss functions that are non-convex already in the single-layer case. When replacing the last layer of the neural networks by our bi-temperature generalization of the logistic loss, the training becomes more robust to noise. We visualize the effect of tuning the two temperatures in a simple setting and show the efficacy of our method on large datasets. Our methodology is based on Bregman divergences and is superior to a related two-temperature method that uses the Tsallis divergence.

Minimax loss for GANs

Minimax GAN loss refers to the minimax simultaneous optimization of the discriminator and generator models.

Minimax refers to an optimization strategy in two-player turn-based games for minimizing the loss or cost for the worst case of the other player.

For the GAN, the generator and discriminator are the two players and take turns involving updates to their model weights. The min and max refer to the minimization of the generator loss and the maximization of the discriminator’s loss.

Focal Loss for Dense Object Detection

The Focal Loss is designed to address the one-stage object detection scenario in which there is an extreme imbalance between foreground and background classes during training (e.g., 1:1000). Therefore, the classifier gets more negative samples (or more easy training samples to be more specific) compared to positive samples, thereby causing more biased learning.

The large class imbalance encountered during the training of dense detectors overwhelms the cross-entropy loss. Easily classified negatives comprise the majority of the loss and dominate the gradient. While the weighting factor (alpha) balances the importance of positive/negative examples, it does not differentiate between easy/hard examples. Instead, we propose to reshape the loss function to down-weight easy examples and thus, focus training on hard negatives. More formally, we propose to add a modulating factor (1 − pt) γ to the cross-entropy loss, with tunable focusing parameter γ ≥ 0. 

We define the focal loss as

FL(pt) = −(1 − pt) γ log(pt)

 

Intersection over Union (IoU)-balanced Loss Functions for Single-stage Object Detection

The IoU-balanced classification loss focuses on positive scenarios with high IoU can increase the correlation between classification and the task of localization. The loss aims at decreasing the gradient of the examples with low IoU and increasing the gradient of examples with high IoU. This increases the localization accuracy of models.

Boundary loss for highly unbalanced segmentation

Boundary loss takes the form of a distance metric on the space of contours (or shapes), not regions. This can mitigate the difficulties of regional losses in the context of highly unbalanced segmentation problems because it uses integrals over the boundary (interface) between regions instead of unbalanced integrals over regions. Furthermore, a boundary loss provides information that is complementary to regional losses. Unfortunately, it is not straightforward to represent the boundary points corresponding to the regional softmax outputs of a CNN. Our boundary loss is inspired by discrete (graph-based) optimization techniques for computing gradient flows of curve evolution.

Following an integral approach for computing boundary variations, we express a non-symmetric L2L2 distance on the space of shapes as a regional integral, which avoids completely local differential computations involving contour points. This yields a boundary loss expressed with the regional softmax probability outputs of the network, which can be easily combined with standard regional losses and implemented with any existing deep network architecture for N-D segmentation. We report comprehensive evaluations on two benchmark datasets corresponding to difficult, highly unbalanced problems: the ischemic stroke lesion (ISLES) and white matter hyperintensities (WMH). Used in conjunction with the region-based generalized Dice loss (GDL), our boundary loss improves performance significantly compared to GDL alone, reaching up to 8% improvement in Dice score and 10% improvement in Hausdorff score. It also yielded a more stable learning process.

Perceptual Loss Function

We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a \emph{per-pixel} loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing \emph{perceptual} loss functions based on high-level features extracted from pre-trained networks. We combine the benefits of both approaches and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.

Conclusion

Loss function takes the algorithm from theoretical to practical and transforms neural networks from matrix multiplication into deep learning. In this article, initially, we understood how loss functions work and then, we went on to explore a comprehensive list of loss functions also we have seen the very recent — advanced loss functions.

References: –
 
https://arxiv.org
https://www.wikipedia.org
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How to Structure Python Programs? An Extensive Guide

How to Structure Python Programs? An Extensive Guide

Python is an extremely readable and versatile high-level programming language. It supports both Object-oriented programming as well as Functional programming. It is generally referred to as an interpreted language which means that each line of code is executed one by one and if the interpreter finds an error it stops proceeding further and gives an error message to the user. This makes Python a widely regarded language, fueling Machine Learning Using Python, Text Mining with Python course and more. Furthermore, with such a high-end programming language, Python for data analysis looks ahead for a bright future.

Data Science Machine Learning Certification

In the Structure of Python

Computer languages have a structure just like human languages. Therefore, even in Python, we have comments, variables, literals, operators, delimiters, and keywords.

To understand the program structure of Python we will look at the following in this article: –

  1. Python Statement
    • Simple Statement
    • Compound Statement
  2. Multiple Statements Per Line
  3. Line Continuation
    • Implicit Line Continuation
    • Explicit Line Continuation
  4. Comments
  5. Whitespace
  6. Indentation
  7. Conclusion

Python Statement

A statement in Python is a logical instruction that the interpreter reads and executes. The interpreter executes statements sequentially, one by one. In Python, it could be an assignment statement or an expression. The statements are mostly written in such a style so that each statement occupies a single line.

Simple Statements

A simple statement is one that contains no other statements. Therefore, it lies entirely within a logical line. An assignment is a simple statement that assigns values to variables, unlike in some other languages; an assignment in Python is a statement and can never be part of an expression.

Compound Statement

A compound statement contains one or more other statements and controls their execution. A compound statement has one or more clauses, aligned at the same indentation. Each clause has a header starting with a keyword and ending with a colon (:), followed by a body, which is a sequence of one or more statements. When the body contains multiple statements, also known as blocks, these statements should be placed on separate logical lines after the header line, indented four spaces rightward.

Multiple Statements per Line

Although it is not considered good practice multiple statements can be written in a single line in Python. It is advisable to avoid multiple statements in a single line. But, if it is necessary, then it can be written with the help of semicolon (;) as the terminator of every statement.

Line Continuation

In Python there might be some cases when a single statement is too long that does not fit the browser window and one needs to scroll the screen left or right. This can be a case of assignment statement with many terms or defining a lengthy nested list. These long statements of code are generally considered a poor practice.

To maintain readability, it is advisable to split the long statement into parts across several lines. In Python code, a statement can be continued from one line to the next in two different ways: implicit and explicit line continuation.

Implicit Line Continuation

This is the more straightforward technique for line continuation. In implicit line continuation, one can split a statement using either of parentheses ( ), brackets [ ] and braces { }. Here, one needs to enclose the target statement using the mentioned construct.

Explicit Line Continuation

In cases where implicit line continuation is not readily available or practicable, there is another option. This is referred to as an explicit line continuation or explicit line joining. Here, one can right away use the line continuation character (\) to split a statement into multiple lines.

Comments

A comment is text that doesn’t affect the outcome of a code; it is just a piece of text to let someone know what you have done in a program or what is being done in a block of code. This is especially helpful when a code is written and someone is analyzing it for bug fixing or making a change in logic, by reading a comment one can understand the purpose of code much faster than by just going through the actual code.

There are two types of comments in Python.
1. Single line comment
2. Multiple line comment

Single line comment

In python, one can use # special character to start the comment.

Multi-line comment

To have a multi-line comment in Python, one can use Triple Double Quotation at the beginning and the end of the comment.

Whitespace

One can improve the readability of the code with the use of whitespaces. Whitespaces are necessary for separating the keywords from the variables or other keywords. Whitespace is mostly ignored by the Python interpreter.

Indentation

Most of the programming languages provide indentation for better code formatting and don’t enforce to have it. However, in Python, it is mandatory to obey the indentation rules. Typically, we indent each line by four spaces (or by the same amount) in a block of code. Also for creating compound statements, the indentation will be of utmost necessity.

Conclusion

So, this article was all about how to structure the Python program. Here, one can learn what constitutes a valid Python statement and how to use implicit and explicit line continuation to write a statement that spans multiple lines. Furthermore, one can also learn about commenting Python code, and about the use of whitespace and indentation to enhance the overall readability.

Our Machine Learning Certifications have undergone an industrial upgradation

We hope this article was helpful to y ou. If you are interested in similar blogs, stay glued to our website, and keep following all the news and updates from Dexlab Analytics.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Machine Learning in the Healthcare Sector

Machine Learning in the Healthcare Sector

The healthcare industry is one of the most important industries when it comes to human welfare. Research analysis from the U.S. federal government actuaries say that Americans spent $3.65 trillion on health care in 2018(report from Axios) and the Indian healthcare market is expected to reach $ 372 billion by 2022. To reduce cost and to move towards a personalized healthcare system, the industry faces three major hurdles: –

1) Electronic record management
2) Data integration
3) Computer-aided diagnoses.

Machine learning in itself is a vast field with a wide array of tools, techniques, and frameworks that can be exploited and manipulated to cope with these challenges. In today’s time, Machine Learning Using Python is proving to be very helpful in streamlining the administrative processes in hospitals, map and treat life-threatening diseases and personalizing medical treatments.

This blog will focus primarily on the applications of Machine learning in the domain of healthcare.

Real-life Application of Machine learning in the Health Sector

  1. MYCIN system was incepted at Stanford University. The system was developed in order to detect specific strains of bacteria that cause infections. It proposed a good therapy in 69% of the cases which was at that time better than infectious disease experts.
  2. In the 1980s at the University of Pittsburgh, a diagnostic tool named INTERNIST-I was developed to diagnose symptoms of various diseases like flu, pneumonia, diabetes and more. One of the key functionalities of the INTERNIST-I was to be able to detect the problem areas. This is done with a view of being able to remove diagnostics’ likelihood.
  3. AI trained by researchers from Pennsylvania has been developed recently which is capable of predicting patients who are most likely to die within a year. This is assessed based on their heart test results. This AI is capable of predicting the death of patients even if the figures look quite normal to the doctors. The researchers have trained the AI with 1.77 million electrocardiograms (ECG) results. The researchers have made two versions of this Al: one with just the ECG data and the other one with ECG data along with the age and gender of the patients.
  4. P1vital’s PReDicT (Predicting Response to Depression Treatment) built on the Machine Learning algorithms aims to develop a commercially feasible way to diagnose and provide treatment of depression in clinical practice.
  5. KenSci has developed machine learning algorithms to predict illnesses and their cure to enable doctors with the ability to detect specific patterns and indicators of population health risks. This comes under the purview of model disease progression.
  6. Project Hanover developed by Microsoft is using Machine Learning-based technologies for multiple purposes, which includes the development of AI-based technology for cancer treatment and personalizing drug combination for Acute Myeloid Leukemia (AML).
  7. Preserving data in the health care industry has always been a daunting task. However, with the forward-looking steps in analytics-related technology, it has become more manageable over the years. The truth is that even now, a majority of the processes take a lot of time to complete.
  8. Machine learning can prove to be disruptive in the medical sector by automating processes relating to data collection and collation. This is highly profitable in terms of cost-effectiveness. Newer algorithms such as Vector Machines or OCR recognition are designed to automate the task of document reading and classification with high levels of precision and accuracy.

  9. PathAI’s technology uses machine learning to help pathologists make faster and more accurate diagnoses. Furthermore, it also helps in identifying patients who might benefit from a new and different type of treatments or therapies in the future.

Data Science Machine Learning Certification

To Sum Up:

As the modern technologies of Machine Learning, Artificial Intelligence and Big Data Analytics are tottering forth in multiple domains, there is a long path they need to walk to ensure an unflinching success. Besides, it is also important for every one of us to be accustomed to all these new-age technologies.

With an expansion of the quality Machine Learning course in India and Neural Network Machine learning Python, all the reputed institutes are joining hands together to bring in the revolution. The initial days will be slow and hard, but it is no doubt that these cutting edge technologies will transform the medical industry along with a range of other industries, making early diagnoses possible along with a reduction of the overall cost. Besides, with the introduction of successful recommender systems and other promises of personalized healthcare, coupled with systematic management of medical records, Machine Learning will surely usher in the future for good! 

 


.

8 Amazing Things That Artificial Intelligence Can Do

8 Amazing Things That Artificial Intelligence Can Do

AI plays a crucial role in our everyday lives. By now, we are aware of AI’s glaring significance in our very existence. Nevertheless, you would be surprised to know that AI has already imbibed some of the skills that we, humans, possess. Ahead, we’ve 8 incredible skills that AI has learnt over the years:

Read

Wondering how to summarize all those kilobytes of information? AI-powered SummarizeBot is the answer. Whether its books, news articles, weblinks, audio/image files or legal documents, ATS (automatic text summarization) reads everything and records the important information. Natural Language Processing (NLP), artificial intelligence, machine learning and blockchain technologies are in play here.  

2

Write

Did you know that myriad news enterprises and seasoned journalists rely on AI to write? The New York Times, Reuters, Washington Post and more have turned to artificial intelligence to craft interesting reading pieces. Also, AI is expected to enhance the process of creative writing as well.  Even, it has generated a novel that was shortlisted for a prestigious award.

See

Machine vision is in the hype. It is implemented in different ways in today’s world, such as facilitating self-driven cars, facial recognition for payment portals, police work and more. The main concept of machine vision is to let the computers ‘visualize’ the world, analyze key data and make decisions thereafter.

Speak

We are fortunate enough to have Google Maps and Alexa to give us directions and respond to our queries but Google Duplex takes it to a whole new level, courtesy AI. With the help of this robust technology, Duplex can schedule appointments and finish tasks on phone in a very interactive language. It can also respond perfectly to human behaviors.

Hear and Understand

Detecting gunshots and alerting to-the-purpose agencies is one of the greatest things achieved by AI. It means AI can hear and understand sound. It is very well evident in how digital voice assistants respond to your queries regarding weather or a day’s agenda. Working professionals simply love the efficiency, accuracy and convenience of automated meeting minutes provided by AI.

Touch

With the help of cameras and sensors, a robot can identify and handpick ‘supermarket ripe’ blueberries and put them in your basket. The creator of the robot even asserts that it is designed to pick one blueberry every 10 seconds for 24 hours a day!

Deep Learning and AI using Python

Smell

A team of AI researchers are at present developing robust AI models that can detect illnesses – simply by smelling. The model is designed in such a way so that it can notice chemicals, known as aldehydes that cause human stress and diseases, including diabetes, cancer and brain injuries. AI bots can even identify other caustic chemicals or gas leaks. Of late, IBM is using AI to formulate new perfumes.

Perceive Emotions

Today, AI tools can observe human emotions and track them down as one watches videos. Artificial emotional intelligence can collect meaningful data from a person’s facial expressions or body language, analyze it to determine what emotion he/she is likely to express and then ascertain an action base on that detail.

For more such interesting updates, follow DexLab Analytics. Our Machine Learning Using Python course is a bestseller. To know more, click here <www.dexlabanalytics.com>

 

This post originally appeared onwww.forbes.com/sites/bernardmarr/2019/11/11/13-mind-blowing-things-artificial-intelligence-can-already-do-today/#2777e5ec6502

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Machine Learning Jobs in 2019: Freezing your own Job

Machine Learning Jobs in 2019: Freezing your own Job

Machine Learning surely needs no introduction. Joining forces with Data Science and Big Data, Machine Learning is one of the principal technologies, which is carving the future for us. From self-propelled cars to voice assistants, to surgical robots, Artificial Intelligence is already amongst us.

Besides, with this cutting-edge technology, marketing is also witnessing a fresh bloom, irrespective of the field you are working on. Thus, it is obvious that the career opportunities have quickly and radically shifted in the way of the candidates who are well-versed with Machine Learning platforms and languages. If you are also looking forward to shooting your career up, the premium Machine Learning course in India is the place you should reach now!

2

Learning Machine Learning is No More a Pain Now!

Whether you are a professional or a fresher planning your way to be successful as a Machine Learning professional, you must ensure that you are updated. Besides, you should also be careful that you have certain skills in your grip that you can work on!

However, if you are not aware of them still, here are the skills that you need to focus on to rest assured:

Programming Languages

As you speak English and/or your regional languages accepted to your society in order to communicate comprehensibly, you also need to be well-versed with the languages specific to Machine Learning.

In a nutshell, R programming certification and Machine Learning Using Python are undoubtedly the most significant ones when it comes to Machine Learning.

Data Modeling

If you believe that you can already boast of considerable knowledge of R & Python, then you shall extend your knowledge a bit more towards the advanced methods of analysis. Brief know how of the coding structures, Data Modeling and Data Visualization will help you steer your career forwards.

Deep Learning and AI using Python

Statistics and Probability

If you are seeking to make a career out of Machine Learning, it is important to note that you should have a good grip of statistics and probability. Now, with the thorough courses of Python for Data Analysis along with extensive knowledge of statistics and probability from Dexlab Analytics, it will be easier than ever.

Besides all these, you also need to grasp significant insights into the improved algorithms and clustering methods. 

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Future of AI and Machine Learning: What the Experts Say?

The Future of AI and Machine Learning: What the Experts Say?

It’s hard to ignore the growing prowess of AI and machine learning.

Previously, Gartner predicted that AI will become one of the key priorities for more than 30% C-Suite professionals by 2020. Indeed, it’s true; software vendors across the globe are following this new gold rush. For them, data is like new oil. In this blog, we explore the future of this budding technology and gain some new insights and ideas. Let’s see what the heavyweights from the digital industry have to say:

Hyper-targeting and Personalization

Ben Wald, Co-Founder & VP of Solutions Implementation at Very

Though machine learning is a subset of data analysis, it’s rapidly influencing the IoT industry and its respective devices. In the last couple of years, nearly 90% of data was generated through an array of smartphones, watches and cars. These mountains of data help in forming better customer relationships.

How? Using Machine Learning Using Python of course! With this power tool, the corporate houses are trying to understand their target audience and extract crucial information regarding how well they receive their products and related after-sales services. Fine-tuning personalization on a wider scale is the key. Hopefully, soon, we will be able to achieve this goal. We are still in the nascent stage.

Improved Search Engine Experiences

Dorit Zilbershot, Chief Product Officer at Attivio

Did you know that AI algorithms have a massive impact on search engine results?

In the next few years, search engines are expected to enhance user and admin experience: courtesy breakthroughs in neural networks and deep learning technologies. These revolutionary technologies, especially deep learning for computer vision with Python will make sure users enjoy a fabulous searching experience and will deliver highly relevant answers. Currently, we are working on delivering results that are based on user’s query and profile. The process requires a lot of manual configurations and a fundamental understanding of how search engines work. Later, the results will be customized based on individuals’ past preferences, interactions and words used. It will be fun to see how machine learning algorithms transform the dynamo of content publishing and search engines.

Quantum Computing

Matt Reaney, Founder & CEO of Big Cloud

Real and revolutionary, the concept of quantum computing is wreaking havoc in the domain of science and technology. It is the future of machine learning triggering an array of innovations. Integrating quantum computing with machine learning is expected to transform the field triggering accelerated learning, quicker processing and better capabilities. This means the intricate challenges that we can’t solve now could be done in a fraction of time then.

The potential of quantum computing is huge in the future and is likely affect millions of lives, notably in medicine and healthcare industry.

Currently, there are no commercially-built quantum algorithms or hardware available in the market. However, several research facilities and government agencies have been investing in this new field of science of late.

Data Science Machine Learning Certification

End Notes

At DexLab Analytics, we love to craft and curate insights from industry pundits, especially when it comes to something as significant as technological innovations that transform lives altogether. Follow us and stay updated!

 


.

Call us to know more