Machine Learning course online Archives - Page 10 of 11 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Humans and Automation Shares an Everlasting Bond for a Successful Tech Future

Humans and Automation Shares an Everlasting Bond for a Successful Tech Future

“God created the world in seven days, because he didn’t have to port anything from legacy systems” – the CEO of a blue chip IT company once quoted. A similar idea was even echoed by MIT’s former director of computer science and AI, Mr. Rodney Brooks who penned down an article “Seven Deadly sins of AI Predictions,” which largely focused on the rate of deployment and the influence of technology over it.

But for any technological revamp, humans are the key ingredient for successful implementation of AI – because they are the ones who have invented such striking tools of automation with their own wit and determination. AI has enhanced productivity, coupled with raising standards of living. Companies all across the globe are recognizing the benefits of AI, and contemplating investments in this budding field of science to trigger greater competitiveness.

Looking for an accelerated Machine Learning course in India? DexLab Analytics is your go-to destination.

2

According to research, there exists a potent relationship between degree of automation and profit generation –the companies that have automated their business processes get to enjoy the perks of higher revenue growth six times more than those who didn’t. Also, they are twice more likely to supersede their pre-determined financial goals.

Now coming to our chief area of concern, how humans deliver a significant impact in coordinating automation with AI projects – their process of imagination, understanding, leadership quality, emotional intelligence and versatile management skills outweighs the very fundamentals of technology, hence it is said that for successful digital transformation, investment on human workforce is indispensable. To derive the best results, it is important to shell out money on crucial human elements that will lead to fuller automation and successful AI implementation.

Automation makes people more human. It liberates them from doing humdrum, repetitive work that pulls them back from doing something productive, or creative. Without AI, businesses can’t work or obtain competitive advantage in the future, making them defenseless. Nevertheless, you can’t expect AI to do a whole bunch of things for you, jobs that require creativity, empathy, critical thinking, leadership, artistic expression are meant for humans, and no automation will be able to fulfill those qualities. Humans are the meat and potatoes for AI, and we can’t agree more!

For better successful ventures, it is imperative to make humans and machines work together – it will only make us better in our job profiles. Also, this kind of relationships best augments the deep-rooted potentials of human beings, making humans more humane.

Research also says in the coming days, creative human skills will garner even more demand. Comprehensive training and skill development is highly advisable to remain ahead in the rat-race of advanced technology. Skills like, creativity, emotional intelligence, collaboration, critical thinking, communication and cognitive flexibility will become key skills to grab specific job titles. 

An advice to make: before entering the workforce, it is better seek broad educational experiences in the field of data science or computer science, or your preferred field of study, and then amp up your CV with a professional, program-centric Machine Learning training Delhi. In this way, you will be always updated and stay ahead of the curve.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Bad Data is Really Bad for Machine Learning: Here’s Some Ways to Fix It

Bad Data is Really Bad for Machine Learning: Here’s Some Ways to Fix It

The quality of data is the talisman of decision-making. Irrespective of the goals, the key to better decision-making lies in the quality of data. As it’s said, bad data takes its toll on organization’s data endeavors – as a result, only 25% of businesses are able to optimize the use of data for revenue generation, despite a volley of resources being thrown at them.

IBM has reckoned that bad data costs companies some $3.1 billion a year in the US alone, while as per Experian’s Data Quality survey, 83% of organizations alleged their revenue is affected by imprecise and incomplete customer or prospect data.

Continue reading “Bad Data is Really Bad for Machine Learning: Here’s Some Ways to Fix It”

How to Leverage AI Strategy in Business?

How to Leverage AI Strategy in Business?

Everyday some company or the other are deploying AI into their systems – whether its Spotify’s machine learning program or Bank of America’s chatbot Erica – it seems AI has broken the shackles and left the machine room to enter the mainstream business.

Today’s AI algorithms are framed on remarkably factual machine sight, speech and hearing, and they have easy access to global cache of information. Thanks to Deep Learning, meteoric growth in data and other cutting edge AI techniques, AI performance is staggeringly improving. With these developments, it may seem possible for CIOs, enterprise architects, application managers who are still in nascent stage in gaining expertise in AI to feel like they are lagging behind somewhere. Contrarily, they are doing well for themselves.

2

How?

No second thoughts, a majority of data architects are still learning AI technology so as to develop their adoption strategy. AI is an ever-evolving technology – constant new developments and breakthroughs are emerging out every day, hence crafting a particular strategy might be difficult at times. Luckily, tech oracles like Whit Andrews, VP distinguished analyst, Gartner, are able to pin down distinct trends that determines the direction of AI in the business, while leveraging its capabilities to the fullest.

Browse through our intensive Data Science with Python Courses – they are a real treat to satiate the analytics hunger!

Check out these three trends that Andrews focuses on to develop formidable AI strategy for your business setup:

Data Science and Machine Learning: In What State They Are To Be Found? – @Dexlabanalytics.

AI will mushroom normal, contextual user-machine interfaces

Google Home and Amazon Echo have penetrated the homes of thousands, taking the consumer space by a storm. Human-computer interaction is now shifting its base from tactile touchscreens and keyboards to voice – the voice recognition is not only limited to distinct commands but deciphers normal human speech.

Natural language processing (NLP) is the reason behind such intrinsic advancements – and we can’t thank more! NLP and natural language generation have improved operations. The workers employed in parts of Eastern Europe can now talk to their system in their own language and grasp the things that need to be done to complete their designated work, making the whole system work seamlessly.

Incredible Tech Transformation: How Machine Learning is changing the Scope of Business – @Dexlabanalytics.

IoT is the future of AI and Fluid Application Integration

IoT devices gather data from the real world, exchange the data, and perform tasks sent through the internet. In general, they are simple in make but when combined with AI, they can rock the world. How would it be if you find an AI-powered IoT that receive orders, grab products and pack them in containers to be shipped across! Impressive, right?

Besides, AI works upon boosting existing organization applications. AI is like a magical stone that improves customer engagement and support, and Bank of America’s chatbot Erica is a perfect example of that.

The Math Behind Machine Learning: How it Works – @Dexlabanalytics.

A complex computing ecosystem will surface out with AI at the center

While companies diversify their systems, computing ecosystem strives to be the beacon of hope – it includes an intricate mix of customers, staffs, IoT devices, applications and data, coupled with AI in the nucleus. This will ensure:

  • Better interaction between people and devices
  • Proper communication between applications
  • And everything in between

No wonder, such ecosystems presents organizations more integrated automation, deeper insight, and better customer experience. Moreover, Gartner has predicted that more virtual agents will get involved in a majority of business interactions between organizations and individuals by 2020 – so the rise of machines is here, and we are extremely excited about it!

Help develop a well-devised AI strategy – with DexLab Analytics. Our consultants will feed you meaningful information on everything related to AI and machine learning. Our machine learning training course is impressive, and if you want to excel in machine learning training, drop by DexLab Analytics. We have a lot of things in store for you!

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

R is Gaining Huge Prominence in Data Analytics: Explained Why

Why should you learn R?

Just because it is largely popular..

Is this reason enough for you?

Budding data analytics professionals look forward to learn R because they think by grasping R skills, they would be able to nab the core principles of data science: data visualization, machine learning and data manipulation.

Be careful, while selecting a language to learn. The language should be capacious enough to trigger all the above-mentioned areas and more. Being a data scientist, you would need tools to carry out all these tasks, along with having the resources to learn them in the desired language.

In short, fix your attention on process and technique and just not on the syntax – after all, you need to find out ways to discover insight in data, and for that you need to excel over these 3 core skills in data science and FYI – in R, it is easier to master these skills as compared to any other language.

Data Manipulation

As rightly put, more than 80% of work in data science is related to data manipulation. Data wrangling is very common; a regular data scientist spends a significant portion of his time working on data – he arranges data and puts them into a proper shape to boost future operational activities. 

In R, you will find some of the best data management tools – dplyr package in R makes data manipulation easier. Just ‘chain’ the standard dplyr together and see how drastically data manipulation turns out to be simple.

For R programming certification in Delhi, drop by DexLab Analytics.

2

Data Visualization

One of the best data visualization tools, ggplot2 helps you get a better grip on syntax, while easing out the way you think about data visualization. Statistical visualizations are rooted in deep structure – they consist of a highly structured framework on which several data visualizations are created. Ggplot2 is also based on this system – learn ggplot2 and discover data visualization in a new way.

However, the moment you combine dplyr and ggplot2 together, through the chaining technology, deciphering new insights about your data becomes a piece of cake.

Machine Learning

For many, machine learning is the most important skill to develop but if you ask me, it takes time to ace it. Professionals, who are in this line of work takes years to fully understand the real workings of machine learning and implement it in the best way possible.

Stronger tools are needed time and often, especially when normal data exploration stops producing good results. R boasts of some of the most innovative tools and resources.

R is gaining popularity. It is becoming the lingua franca for data science, though there are several other high-end language programs, R is the one that is used most widely and extremely reliable. A large number of companies are putting their best bets on R – Digital natives like Google and Facebook both houses a large number of data scientists proficient in R. Revolution Analytics once stated, “R is also the tool of choice for data scientists at Microsoft, who apply machine learning to data from Bing, Azure, Office, and the Sales, Marketing and Finance departments.” Besides the tech giants, a wide array of medium-scale companies like Uber, Ford, HSBC and Trulia have also started recognizing the growing importance of R.

Now, if you want to learn more programming languages, you are good to go. To be clear, there is no single programming language that would solve all your data related problems, hence it’s better to set your hands in other languages to solve respective problems.

Consider Machine Learning Using Python; next to R, Python is the encompassing multi-purpose programming language all the data scientists should learn. Loaded with incredible visualization tools, machine learning techniques, Python is the second most useful language to learn. Grab a Python certification Gurgaon today from DexLab Analytics. It will surely help your career move!

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Classifying Bank Customer Data Using R? Use K-means Clustering

Before delving deeper into the analysis of bank data using R, let’s have a quick brush-up of R skills.

 

Classifying Bank Customer Data Using R? Use K-means Clustering

 

As you know, R is a well-structured functional suite of software for data estimation, manipulation and graphical representation.

Continue reading “Classifying Bank Customer Data Using R? Use K-means Clustering”

5 Hottest Online Applications Inspired by Artificial Intelligence

5 Hottest Online Applications Inspired by Artificial Intelligence

Artificial Intelligence projects, applications and platforms are being churned out from every corner of the world. A majority of them now possess the ability to break loose lab life and hit mainstream trends, making an appearance in myriad online tools, open source APIs and mass gadgets.

Though the machines are yet to take over our lives, they are filtrating their way into our lives, influencing day-to-day activities, be it work or entertainment. From personal assistants like Alexa and Siri, to self-driving vehicles powered by predictive modeling and more intense and fundamental machine learning technologies, a wide set of applications of AI are in use of late.

Feed yourself with Machine Learning Using Python technology, only from DexLab Analytics.

We perused through a handful number of AI apps so that we can enlist the ones that are more practical and thus really deserving! Let’s leverage piles of data with these effective applications:

Siri

As per Creative Strategies report, 70% of iPhone users have used Siri at least for once or sometimes, but everyone has tried it at least. We are here to tell you don’t hire a personal assistant, instead implement Siri.

siri

This voice-powered virtual assistant makes business operations smoother and hassle-free, while making your workday more productive. The software is activated by voice, and it is at present available in 20 languages.

Alexa

Developed and powered by Amazon for Amazon Echo intelligent speaker, Alexa, a robust voice service was launched in 2014. It can help you in ordering supplies, translating and controlling office’s vacuum.

amazon-echo

However, connecting your Echo to IFTTT may allow you to coordinate with services that aren’t supported originally by the Echo, while allowing you to integrate multiple actions into a single command to the Echo.

Google Now

This is one of the most popular artificial intelligence applications. Google Now functions by keeping a tab on your calendar, mail, web searches and lot more, along with sending relevant alerts and news on your device as and when detected. It can also carry out tasks, and answer queries, based on voice commands.

google-now

The best part of this application is that you don’t have to log in to use it. Just set up alerts that will be sent to the device, and that’s all. At present, it is available in English and is considered a tailing rival of Siri.

Cortana

If you know the exact way to maneuver it, Cortana would be the most effective AI personal assistant. It can perform all sorts of things, right from dictating and sending emails, tracking flights to searching something on the internet or checking weather forecasts. The more time you spent on it, its functionality gets better and better.

cortana

Even, the company is so impressed by its services that it has integrated the service into Power BI, its most intuitive BI tool.

Braina

Brain Artificial, aka Braina is self-regulating software, which enables easy hands-free operation in your computer to perform basic tasks by listening to voice based commands in English language.

braina-1

Braina enjoys a certain edger over its run of the mill competitors as it can precisely work with a variety of accents, which is not so common. The pro version is equipped with a bonus of deep learning – it is programmable as well as observes user behavior over time.

Hope, AI applications serves the humanity well!

Check out some more interesting stuff on Machine Learning at DexLab Analytics. We offer world-class machine learning courses in Delhi for all your data aspirations. Come, explore!

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

The Evolution of Neural Networks

The Evolution of Neural Networks

Recently, Deep Learning has gone up from just being a niche field to mainstream. Over time, its popularity has skyrocketed; it has established its position in conquering Go, learning autonomous driving, diagnosing skin cancer, autism and becoming a master art forger.

Before delving into the nuances of neural networks, it is important to learn the story of its evolution, how it came into limelight and got re-branded as Deep Learning.

The Timeline:

Warren S. McCulloch and Walter Pitts (1943): “A Logical Calculus of the Ideas Immanent in Nervous Activity”

Here, in this paper, McCulloch (neuroscientist) and Pitts (logician) tried to infer the mechanisms of the brain, producing extremely complicated patterns using numerous interconnected basic brain cells (neurons).  Accordingly, they developed a computer-programmed neural model, known as McCulloch and Pitt’s model of a neuron (MCP), based on mathematics and algorithms called threshold logic.

2

Marvin Minsky (1952) in his technical report: “A Neural-Analogue Calculator Based upon a Probability Model of Reinforcement”

Being a graduate student at Harvard University Psychological Laboratories, Minsky executed the SNARC (Stochastic Neural Analog Reinforcement Calculator). It is possibly the first artificial self-learning machine (artificial neural network), and probably the first in the field of Artificial Intelligence.

Marvin Minsky & Seymour Papert (1969): “Perceptron’s – An Introduction to Computational Geometry” (seminal book):  

In this research paper, the highlight has been the elucidation of the boundaries of a Perceptron. It is believed to have helped usher into the AI Winters – a time period of hype for AI, in which funds and publications got frozen.

Kunihiko Fukushima (1980) – “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position” (this concept is an important component for Convolutional Neural Network – LeNet)

Fukushima conceptualized a whole new, much improved neural network model, known as ‘Neocognitron’. This name is derived from ‘Cognitron’, which is a self-organizing multi layered neural network model proposed by [Fukushima 1975].

David B. Parker (April 1985 & October 1985) in his technical report and invention report – “Learning – Logic”

David B. Parker reinvented Backpropagation, by giving it a new name ‘Learning Logic’. He even reported it in his technical report as well as filed an invention report.

Yann Le Cun (1988) – “A Theoretical Framework for Back-Propagation”

You can derive back-propagation through numerous ways; the simplest way is explained in Rumelhart et al. 1986. On the other hand, in Yann Le Cun 1986, you will find an alternative deviation, which mainly uses local criteria to be minimized locally.

 

J.S. Denker, W.R. Garner, H.P. Graf, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, H.S. Baird, and I. Guyon at AT&T Bell Laboratories (1989): “Neural Network Recognizer for Hand-Written ZIP Code Digits”

In this paper, you will find how a system ascertains hand-printed digits, through a combination of neural-net methods and traditional techniques. The recognition of handwritten digits is of crucial notability and of immense theoretical interest. Though the job was comparatively complicated, the results obtained are on the positive side.

Yann Le Cun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel at AT&T Bell Laboratories (1989): “Backpropagation Applied to Handwritten ZIP Code Recognition”

A very important real-world application of backpropagation (handwritten digit recognition) has been addressed in this report. Significantly, it took into account the practical need for a chief modification of neural nets to enhance modern deep learning.

Besides Deep Learning, there are other kinds of architectures, like Deep Belief Networks, Recurrent Neural Networks and Generative Adversarial Networks etc., which can be discussed later.

For comprehensive Machine Learning training Gurgaon, reach us at DexLab Analytics. We are a pioneering data science online training platform in India, bringing advanced machine learning courses to the masses.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Role of Self Service Analytics in Businesses

Role of Self Service Analytics in Businesses

Self Service Analytics is proving useful for business users, who are working on business data without necessarily having a background in technology and statistics. It is essentially bridging the gap between trained data analysts and normal business users.

Following are the characteristics of Self Service Analytics:

  1. Business Users Independence:

Self Service Analytics reduces dependency on IT and Data warehousing teams, thereby reducing the turnaround time for a request made by a business user.

It does so by continuously collating and loading real time data into a singular stream without disparity, which is easily accessible through browsers. Thus, it helps business users in taking decisions on Real-Time basis.

This feature benefits organizations because vital decisions made within time can be more profitable as compared to the traditional way of analysing data, which may not be a good idea in respect to the urgency constraint.

2

  1. Easier and Reduced Cost of Operations:

Often, the company’s data are fragmented and widespread across various divisions. This increases the headache of channelling the data meaningfully and in a wholesome manner.

Further to this, preparing reports using this data becomes a cumbersome job for the IT department or the department, which is serving such request. Hence, it may lead to increased cost of time or decreased quality of efficiency at which the operations have to run. However, many a times, these reports fail to give an overview of the operations in an organisation.

Self-service BI integrates data from different systems and delivers a “Single Version of Truth”. Accessing this data and running computations on it requires only a browser for access and eliminates the need to install, maintain and administer large-footprint software clients on each user’s workstation.

If Self Service Analytics is hosted on SaaS, it will further reduce the cost of machinery and maintenance associated with it. The provision for usage can be increased or decreased in no time according to the usage pattern. This really means that Self Service Analytics helps you adapt with time and Pay-Per-Use model, which is a leading trend in most of the industries.

  1. Resolving the conflict over accuracy:

Typically, a business user using Excel would have a local copy of data and run computations on it. He can merge and transform it by using various formulas and finally derive a conclusion.

This is dangerous because in live operations, data keeps changing and data integrity is at stake by working on local copies. Thus, accuracy in decision-making becomes a game of luck.

In Self Service BI, the data from the source is extracted, transformed and loaded into a unique data model, which goes with all operations. In this case, data integrity is assured. In addition, all business users have the same source of data, removing the risk that working with different local copies have.

Therefore, from the above stated facts, we can conclude that Self Service Analytics is a need for today’s businesses.

However, there are a few risks involved in Self Service Business Analytics:

  1. Loose corporate governance and make data available to business users directly may be taken advantage of in an undue manner.
  2. Business users may not be properly trained or skilled to make decisions.
  3. Relying heavily on any tool without some real life experience and insight into the background of that data can result into an impaired decision-making.

If all the above-mentioned risks are mitigated and proper corporate governance structure is in place, Self Service Analytics can be very beneficial for the success of any organization.

To excel in Self-Service Analytics, why not take up Machine Learning courses in Delhi from DexLab Analytics! They are informative, interesting and elaborate.





 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Facebook is planning to evaluate its quest for generalised AI

Facebook Artificial Intelligence Researchers

A major misconception about artificial intelligence is the fact that today’s robots possess a very generalized intelligence, however, we are fairly efficient in leveraging large datasets to accomplish otherwise complex tasks. Nevertheless we still fail and fall flat at the prospect of replicating the breadth of human intelligence.

Care to contribute to AI development in today’s world? Then take up a Machine Learning course online with us. But in order to move forward a generalized intelligence, Facebook is ensure that we know how to evaluate the process. In a recently released paper, Facebook’s AI research (FAIR) lab has outlined just that as a part of its CommAI framework.

2

We will need our systems to be able to communicate and will be able to learn through language effectively even when they lack in context and discussing thing in undefined terms.

Furthermore, such systems should be capable of learning up new skills, fairly simply. As per Facebook this skill set is called “learning to learn”. Present machine learning models may be trained on data and be used for classifying defined objects. We can also make use of transfer learning to quickly adapt a model to achieve the same task on the new data, however our machines cannot completely teach themselves without heavy to moderate intervention from the developers.

It is in general agreed upon, that in order to generalize across several tasks, a program should be capable of compositional training. And that is of storing and recombination solutions to sub-problems across the different tasks, as per the team from Facebook.

As per Facebook they consider these capabilities to be of more of a prerequisite to being a generalized AI than the true Turing test. Alan Turing created the original Turing test in the 1950s. It is usually understood to be a means of assessing machine learning intelligence with respect to human intelligence.

However, with the maturation of the field of Ai the Turing test has lost a lot of its relevance. Facebook hopes to offer a nice alternative way to think about the necessary requirements of a modern generalized AI which should be less of a research distraction than the more rigid Turing Test.

The team at FAIR which include – Marco Baroni, Armand Joulin, Allan Jabri, Germán Kruszewski, Angeliki Lazaridou, Klemen Simonic and Tomas Mikolov have also developed another open source platform for the testing and training of AI systems.

For more information on Machine Learning training in Gurgaon or in Delhi NCR, drop by our institute at DexLab Analytics.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more