deep learning course Archives - Page 3 of 4 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

The Future of AI and Machine Learning: What the Experts Say?

The Future of AI and Machine Learning: What the Experts Say?

It’s hard to ignore the growing prowess of AI and machine learning.

Previously, Gartner predicted that AI will become one of the key priorities for more than 30% C-Suite professionals by 2020. Indeed, it’s true; software vendors across the globe are following this new gold rush. For them, data is like new oil. In this blog, we explore the future of this budding technology and gain some new insights and ideas. Let’s see what the heavyweights from the digital industry have to say:

Hyper-targeting and Personalization

Ben Wald, Co-Founder & VP of Solutions Implementation at Very

Though machine learning is a subset of data analysis, it’s rapidly influencing the IoT industry and its respective devices. In the last couple of years, nearly 90% of data was generated through an array of smartphones, watches and cars. These mountains of data help in forming better customer relationships.

How? Using Machine Learning Using Python of course! With this power tool, the corporate houses are trying to understand their target audience and extract crucial information regarding how well they receive their products and related after-sales services. Fine-tuning personalization on a wider scale is the key. Hopefully, soon, we will be able to achieve this goal. We are still in the nascent stage.

Improved Search Engine Experiences

Dorit Zilbershot, Chief Product Officer at Attivio

Did you know that AI algorithms have a massive impact on search engine results?

In the next few years, search engines are expected to enhance user and admin experience: courtesy breakthroughs in neural networks and deep learning technologies. These revolutionary technologies, especially deep learning for computer vision with Python will make sure users enjoy a fabulous searching experience and will deliver highly relevant answers. Currently, we are working on delivering results that are based on user’s query and profile. The process requires a lot of manual configurations and a fundamental understanding of how search engines work. Later, the results will be customized based on individuals’ past preferences, interactions and words used. It will be fun to see how machine learning algorithms transform the dynamo of content publishing and search engines.

Quantum Computing

Matt Reaney, Founder & CEO of Big Cloud

Real and revolutionary, the concept of quantum computing is wreaking havoc in the domain of science and technology. It is the future of machine learning triggering an array of innovations. Integrating quantum computing with machine learning is expected to transform the field triggering accelerated learning, quicker processing and better capabilities. This means the intricate challenges that we can’t solve now could be done in a fraction of time then.

The potential of quantum computing is huge in the future and is likely affect millions of lives, notably in medicine and healthcare industry.

Currently, there are no commercially-built quantum algorithms or hardware available in the market. However, several research facilities and government agencies have been investing in this new field of science of late.

Data Science Machine Learning Certification

End Notes

At DexLab Analytics, we love to craft and curate insights from industry pundits, especially when it comes to something as significant as technological innovations that transform lives altogether. Follow us and stay updated!

 


.

How progressive is an Artificial Neural Network? Tracking ANNs

How progressive is an Artificial Neural Network? Tracking ANNs

The major improvements that Artificial Neural Network is bringing about in favour of deep learning for computer vision with Python are ground-breaking. Machine vision, in general, is hugely benefitted with the inclusion of the computer vision course Pythonspurred by the all-new technology of Neural Networks. This is by and large a huge advancement in the field of computer science and gives much of an insight into what the future holds for us.

However, along with an array of experiments that are performed day in day out with Neural Network Machine Learning Python, numerous other fields are also likely to be revamped in much the same way. Predicting the weather, studying animals and other critical studies of cosmology are also believed to be easing soon holding the hands of the Artificial Neural Network technology.

2

Some Well-known Feats of the Artificial Neural Network

Artificial Neural networks (ANNs) are used in studying the patterns, relationships from the collected data just like humans. Going by the name, ANNs are modelled on the neural networks found in our brains, which are used to infuse the machines with the ability to learn by them. Besides, ANNs have been hugely successful in bringing about the concept of self-driving cars, boosting medical technology and numerous other fields. But, here we lay down some other fields which are soaking in the Artificial Neural Network extensively.

Meteorology

The accurate prediction of hailstorms and providing relevant alerts to the specific areas are expected to boost shortly. With the inclusion of Convolutional neural networks, (CNNs) the study of meteorology is deemed to achieve new heights. Besides, this improved technology would also be capable of identifying the size of the hails during this storm.

Tracking Bird Migration

We are all aware of the phenomenon of migration for the birds. But with the changing age, the routes of the birds are also different from what they used to be. However, if you need to track the migration of the birds, you can opt for the exclusive Neural Networks in Python course.

Deep Learning and AI using Python

Interpreting the Dark Matter

Dark matter has been a topic which remains largely unexplored till date. Nothing beyond the name and the fact that it binds the universe together is brought to light. However, with the marked progress of the premium institutes like the Neural Networks Training in Delhithe dark matter will no longer be a mystery.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Application of Mode using R and Python

Application of Mode using R and Python

Mode, for a given set of observations, is that value of the variable, where the variable occurs with the maximum or the highest frequency.

This blog is in continuation with STATISTICAL APPLICATION IN R & PYTHON: CHAPTER 1 – MEASURE OF CENTRAL TENDENCY. However, here we will elucidate the Mode and its application using Python and R.

Mode is the most typical or prevalent value, and at times, represents the true characteristics of the distribution as a measure of central tendency.

Application:

The numbers of the telephone calls received in 245 successive one minute intervals at an exchange are shown in the following frequency distribution table:

 

No of Calls
Frequency
0
14
1
21
2
25
3
43
4
51
5
40
6
51
7
51
8
39
9
12
Total
245

 

 [Note: Here we assume total=245 when we calculate Mean from the same data]

Evaluate the Mode from the data.

Evaluate the Mode from the data

Calculate Mode in R:

Calculate mode in R from the data, i.e. the most frequent number in the data is 51.

The number 51 repeats itself in 5, 7 and 8 phone calls respectively.

Calculate Median in Python:

First, make a data frame for the data.

Now, calculate the mode from the data frame.

Calculate mode in Python from the data, i.e. the most frequent number in the data is 51.

The number 51 repeats itself in 5, 7 and 8 phone calls respectively.

Mode is used in business, because it is most likely to occur. Meteorological forecasts are, in fact, based on mode calculations.

The modal wage of a group of the workers is the wages which the largest numbers of workers receive, and as such, this wage may be considered as the representative wage of the group.

In this particular data set we use the mode function to know the occurrence of the highest number of phone calls.

It will thus, help the Telephone Exchange to analyze their data flawlessly.

2

Note – As you have already gone through this post, now, if you are interested to know about the Harmonic Mean, you can check our post on the APPLICATION OF HARMONIC MEAN USING R AND PYTHON.

Dexlab Analytics is a formidable institute for Deep learning for computer vision with PythonHere, you would also find more information about courses in Python, Deep LearningMachine Learning, and Neural Networks which will come with proper certification at the end.

We are there in the Social Media where you can follow us both in Facebook and Instagram.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

A Deeper Understanding of Deep Learning

A Deeper Understanding of Deep Learning

To define Deep Learning, it can be summed up as a machine learning technique used to teach computers all those things which comes to humans quite instinctively. This is a sub-classification of the umbrella term Machine Learning and is based on artificial neural networks.

The technology of driver-less cars, of computers with the knowledge of lampposts and trees as non-living entities and with their discretion of differentiating between a pedestrian and a lamppost, all are being developed from Deep Learning. Besides, the voice assistant you find nowadays, that comes with the smartphones, tablets, TVs and hands-free electronic gadgets, everything is matured by Deep Learning.

Deep Learning is an immensely effective technique with huge prospective. Thus, Deep Learning is a highly regarded technology and more and more people are looking forward to finding their career in it.

2

Deep Learning: The Path of Success

Among the ever-changing technologies, Deep Learning has its path paved to stand strong in the long run. Now, this is possible primarily because of the high accuracy levels that it has reached.

Pin-pointed Accuracy

With the convincing accuracy levels reached, Deep Learning is believed to be steadfast in situations which involves high risks and which calls for the least margin of errors. For example – driver-less cars.

Extensive Library

If you aim Deep Learning for computer vision with Python, you should be ready with enormous information that it can go through and process quite effortlessly, hence, putting forth an all-inclusive library to be used in real-time. For instance, millions of images, days of video and data should be fed to the system going forward to develop the technology of the driverless car.

Powerful Computing

If we talk about the power that Deep Learning needs, it is astonishingly unreal, the amount of power that this technology expects to perform in its optimum. None other than immensely powerful GPUs are used to get the best results.

As Deep Learning is quite a new thing, unknown in most of its dimensions, here are a few of the fields which have already absorbed or are trying to infuse Deep Learning in constructively.

  • Automobiles – As we have already mentioned that the automobile industry has already taken Deep Learning quite seriously and is effective moving in the direction, where, soon we would witness cars without any human drivers.
  • Defence and Aerospace – Deep learning is constantly taken into account when determining the objects that the satellites bring us. Via Deep Learning we can be sure of the areas/objects in the space. Furthermore, whether a particular zone is fit for the soldiers or not, can also be easily determined by Deep Learning.
  • Pharmacy – Deep Learning is highly significant even in modern medical science. For example, this technology is used to detect cancerous cells.

Deep Learning and AI using Python

With these being said, Deep Learning is simply superb in how it has performed still and the promise that it is showing to be on par with the age. Therefore, if you are seeking for the Deep learning for computer vision course, you can simply avail of Deep Learning for computer vision Training Center in Delhi NCR.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Deep Learning to Boost Ghost Hunting and Paleontology Efforts

Deep Learning to Boost Ghost Hunting and Paleontology Efforts

Deep leaning technology is taking the world by storm. It is leaving no territory untouched, not even the world of dead! Yes, this robust technology has now started hunting ghosts – for real. Of late, Nature Communication even published a paper highlighting that a ghost population has even contributed to today’s genomes.

With the help of a demographic model structured on deep learning in an Approximate Bayesian Computation framework, it is now possible to delve into the evolutionary history of the Eurasian population in sync with the present-day genetic evidence. Since it is believed that all modern humans have originated Out of Africa, the evolutionary history of the Eurasian population has been identified by introgressions from currently extinct hominins. What’s more, talking about the unknown population, the researchers believe they either trace their roots to Neanderthal-Denisova clade or simply forked early from the Denisova lineage.

2

If you want to take a look at the original paper, click here www.nature.com/articles/s41467-018-08089-7

In addition, the study reflects how the fabulous technology of AI can be leveraged in paleontology. Whether it’s about discovering unpredictable ghosts or unraveling the fading footprints of the whole evolutionary journey, deep learning and AI are taking the bull (paleontology, in this respect) by its horns. According to the paper, researchers studied deep about the evolutionary process of Eurasian population, including past introgression events in OOA (Out of Africa) populations suiting the contemporary genetic evidence and they have produced several simulated evolutionary data, like the total size of ancestral human populations, the exact number of populations, the appropriate time when they branched out from one another, the rate at which they intermixed and so on. Besides, a wide number of simulated genomes for current-day humans have been launched.

The latest and very efficient deep learning method highlights the crucial importance of genomes – they can easily let you know which evolutionary models are most likely to reveal respective genetic patterns. Moreover, if you study closely, you will find that the culture of the entire industry has changed over the past few years. Advanced computers and technology modifications have achieved ‘things’ that were simply impossible with pen and paper a few years back. Perhaps, what’s more interesting is that our perspective of seeing data has changed completely. The potent advances in AI and machine learning have demystified the ways in which algorithms work leading to more concrete shreds of evidence and end-results, which were previously not possible with the age-old traditional methods.

The blog first appeared on www.analyticsindiamag.com/deep-learning-uncovers-ghosts-in-modern-dna

Are you interested in artificial intelligence certification in Delhi NCR? DexLab Analytics is your go-to institute, which is specialized in imparting in-demand skill training courses. Be it artificial intelligence course, data science certification or Python Spark training, DexLab Analytics excels in all – for more information, contact us today.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

A Beginner’s Guide to Deep Learning: Exploring the Basics

A Beginner’s Guide to Deep Learning: Exploring the Basics

Over the last couple of years, no other part of data science has made progress like Deep Learning has. From self-driving cars to scientific research, deep learning has been the game-changer in almost every innovation made. Day by day, its influence on our way of life is getting stronger!

Deep learning is a vast and complex field having numerous sections. It takes several months of consistent effort to master the basics before delving deeper into the subject. And a thorough understanding of fundamental concepts of calculus and algebra is essential for getting started with deep learning education.

This article discusses the basics of deep learning for newbies.

Machine Leaning Basics

One must be thorough with the basics of machine learning, which includes reinforced, supervised and unsupervised learning, before starting off your deep learning education. Statistical techniques, like linear regression and logistic regression, are greatly needed in this field.

Deep Learning Introduction

First of all, you need to know the various deep learning frameworks. Deep Learning algorithms draw inspiration from artificial neural networks. While there are many free online courses, a professional course from a reputed deep learning training institute is the ideal starting point for beginners. Additionally, you can follow relevant eBooks, like the Neural Networks and Deep Learning PDF by Michael Nielson.

Understanding Neural Networks

Neural networks have a layered outlay and their functioning resembles the neurons of human brain. Neural networks are made up of an input layer, an output layer and a hidden layer, and produce output after receiving an input – just like human mind works. You need to be familiar with techniques of handling and pre-processing data, regularization methods, data augmentation, hyperparameter technique, etc. These functions of artificial neural network are widely employed in deep learning, helping tasks like image and speech recognition.

Data Science Machine Learning Certification

Convolution Neural Network Basics

An important role in deep learning is played by Convolution Neural Network, which is profusely used in object detections, facial recognition, image recognition and classifications, etc. In deep learning, CNN models work by passing the input image through a string of convoluted layers before classifying it with probabilistic values.

Knowing Sequence Models

If you want to go deeper into deep learning, it is crucial to know how to develop models such as Recurrent Neural Networks (RNNs), and make use of alternatives, like Long Short Term Memory (LSTMs) and Gated Recurrent Unit (GRU). Working with audio applications and music synthesis becomes easier when you understand these models.

Unsupervised Deep Learning

A complex topic, but learning it helps crack otherwise unsolvable problems. Problems that remain unclear even after applying supervised learning methods like biasing can be explained with unsupervised deep learning. One popular algorithm of unsupervised deep learning is Autoencoder neural network.

Know Natural Language Processing

NPL deals with understanding human speech and has many benefits.  With the help of computational algorithms, NPL analyzes and represents human language. It can also be employed in dialogue generation, machine translation, etc.

Deep Reinforcement Learning

Deep reinforcement learning has immense potential in deep learning. Reinforcement learning algorithms united with deep learning created AlphaGo, which was successful in defeating the strongest Go players!

Theory isn’t enough; you must implement your deep learning knowledge. And to do that properly, you must be able to use Python.

There’s no need to panic if Python looks like Hebrew at the moment! DexLab Analytics is here to offer expert guidance by skilled industry experts. We offer comprehensive and industry-driven deep learning certification in Gurgaon. You can also check our popular Python certification courses.

 
Reference: https://www.analyticsindiamag.com/the-best-resources-for-learning-deep-learning-for-beginners/


.

More than Statistics, Machine Learning Needs Semantics: Explained

More than Statistics, Machine Learning Needs Semantics: Explained

Of late, machines have achieved somewhat human-like intelligence and accuracy. The deep learning revolution has ushered us into a new era of machine learning tools and systems that perfectly identifies the patterns and predicts future outcomes better than human domain experts. Yet, there exists a critical distinction between man and machines. The difference lies in the way we reason – we, humans like to reason through advanced semantic abstractions, while machines blindly depend on statistics.

The learning process of human beings is intense and in-depth. We prefer to connect the patterns we identify to high order semantic abstractions and our adequate knowledge base helps us evaluate the reason behind such patterns and determine the ones that are most likely to represent our actionable insights.

2

On the other hand, machines blindly look for powerful signals in a pool of data. Lacking any background knowledge or real-life experiences, deep learning algorithms fail to distinguish between relevant and specious indicators. In fact, they purely encode the challenges according to statistics, instead of applying semantics.

This is why diverse data training is high on significance. It makes sure the machines witness an array of counterexamples so that the specious patterns get automatically cancelled out. Also, segmenting images into objects and practicing recognition at the object level is the order of the day. But of course, current deep learning systems are too easy to fool and exceedingly brittle, despite being powerful and highly efficient. They are always on a lookout for correlations in data instead of finding meaning.

Are you interested in deep learning? Delhi is home to a good number of decent deep learning training institutes. Just find a suitable and start learning!

How to Fix?

The best way is to design powerful machine learning systems that can tersely describe the patterns they examine so that a human domain expert can later review them and cast their approval for each pattern. This kind of approach would enhance the efficiency of pattern recognition of the machines. The substantial knowledge of humans coupled with the power of machines is a game changer.

Conversely, one of the key reasons that made machine learning so fetching as compared to human intelligence is its quaint ability to identify a range of weird patterns that would look spurious to human beings but which are actually genuine signals worth considering. This holds true especially in theory-driven domains, such as population-scale human behavior where observational data is very less or mostly unavailable. In situations like this, having humans analyze the patterns put together by machines would be of no use.

End Notes

As closing thoughts, we would like to share that machine learning initiated a renaissance in which deep learning technologies have tapped into unconventional tasks like computer vision and leveraged superhuman precision in an increasing number of fields. And surely we are happy about this.

However, on a wider scale, we have to accept the brittleness of the technology in question. The main problem of today’s machine learning algorithms is that they merely learn the statistical patterns within data without putting brains into them. Once, deep learning solutions start stressing on semantics rather than statistics and incorporate external background knowledge to boost decision making – we can finally chop off the failures of the present generation AI.

Artificial Intelligence is the new kid on the block. Get enrolled in an artificial intelligence course in Delhi and kickstart a career of dreams! For help, reach us at DexLab Analytics.

 

The blog has been sourced from www.forbes.com/sites/kalevleetaru/2019/01/15/why-machine-learning-needs-semantics-not-just-statistics/#789ffe277b5c

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Deep Learning: Is It Still on the ‘Hype Cycle’?

Deep Learning: Is It Still on the ‘Hype Cycle’?

Interestingly, the last decade has witnessed some phenomenal leaps in the technology domain, notably in AI. As compared to the early days of speech recognition, smartphones we use today have transformed themselves entirely; they are more like our virtual assistants: the reason being quantum advancements in Deep Learning and Machine Learning.

The craze surrounding Deep Learning continues to grow. In this blog, we will evaluate whether the trend is going to stay for long and influence the future of AI or is it just a hype which will soon disappear into thin air.

The Hype Cycle

In simple terms, a ‘hype cycle’ refers to a curve that escalates to a peak at the start, then drops sharply and gets into a plateau. Perhaps not surprisingly, Deep Learning has been a part of diverse ‘hype cycles’. Currently, if you follow the tech market statistics, you will find that DL is yet to reach the plateau of productivity, where it would be largely accepted by the public and leveraged for daily work. As of now, DL hasn’t reached that stage, that’s why we can’t confirm whether the technology is going to stay or dwindle away.

2

From a DL Enthusiast’s Perspective

Following present-day market trends, we can say that virtual reality and augmented reality are close to the plateau of productivity. Years back, when these advanced technologies were launched they exhibited the same hype as Deep Learning. However, with time and development, they are now on the verge of becoming main-stream and we expect the same for our new friend Deep Learning.

In fact, if we see from the perspective of a DL enthusiast, we will discover that DL has been more than just a hype – it has actually done wonders in diverse fields – from playing games to self-driven cars, DL technology is used in almost everything ‘technological’.

In 2016, an AI-driven Go-playing system won over Korean champion Lee Sodol. Not only did it defeated the opponent but also excelled to become the best of Go, acing the strategy game. Tesla too leverages the Deep Learning technology for their self-driving cars. Next, Amazon’s Alexa is heard to use the divine technology of DL to make love-life predictions. It will suggest you what went wrong between you and your consort.

Looking for an artificial intelligence course in Delhi? DexLab Analytics is here with its encompassing range of in-demand skill training courses. Check our course itinerary and suit yourself.

Put simply, Deep Learning is the revolutionary new-age technology. Organizations are investing funds and resources all over the world. Considering the current growth rate, DL technology is soon expected to break into the mainstream industry replacing all conventional modes of technology and communications.

Outlook

With AI being the topic of discussion in almost every industry verticals, DL has been gaining popularity. No wonder, it has proved tremendously beneficial in the past but the future expectations are pretty high as well. In this case, we have to wait and observe how Deep Learning manages to fulfil industry expectations and stay inside the ring!

Delhi is home to a bevy of reputable Deep learning training institutes. Browse over their course details and pan out the best from the lot.

The blog has been sourced from ―  www.analyticsindiamag.com/why-is-deep-learning-still-on-the-hype-cycle/

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Deep Learning is Solving Forecasting Challenges in Retail Industry

How Deep Learning is Solving Forecasting Challenges in Retail Industry

Known to all, the present-day retail industry is obsessed with all-things-data. With Amazon leading the show, many retailers are found implementing a data-driven mindset throughout the organization. Accurate predictions are significant for retailers, and AI is good in churning out value from retail datasets. Better accuracy in forecasts has resulted in widespread positive impacts.

2

Below, we’ve chalked down how deep learning, a subset of machine learning addresses retail forecasting issues. It is a prime key to solve most common retail prediction challenges – and here is how:

  • Deep learning helps in developing advanced, customized forecasting models that are based on unstructured retail data sets. Relying on Graphic Processing Units, it helps process complex tasks – though GPUs area applied only twice during the process; once during training the model and then at the time of inference when the model is applied to new data sets.

  • Deep learning-inspired solutions help discover complex patterns in data sets. In case of big retailers, the impressive technology of Deep Learning supports multiple SKUs all at the same time, which proves productive on the part of models as they get to learn from the similarities and differences to seek correlations for promotion or competition. For example, winter gloves sell well when puffer jackets are already winning the market, indicating sales. On top of that, deep learning can also ascertain whether an item was not sold or was simply out of stock. It also possesses the ability to determine the larger problem as to why the product was not being sold or marketed.

  • For a ‘cold start’, historical data is limited but deep learning has the power to leverage other attributes and boost the forecasting. The technology works by picking similar SKUs and implement that information to bootstrap forecasting process.

Nonetheless, there exists an array of challenges associated with Deep Learning technology. The very development of high-end AI applications is at a nascent stage; it is yet to become a fully functional engineering practice.

A larger chunk of successful AI implementation depends on the expertise and experience of the breed of data scientists involved. Handpicking a qualified data scientist in today’s world is the real ordeal. Being fluent in the nuances of deep learning imposes extra challenges. Moreover, apart from being labor intensive in terms of feature engineering and data cleaning, the entire methodology of developing neural network models all manually is difficult and downright challenging. It may even take a substantial amount of time to learn the tricks and scrounge through numerous computational resources and experiments performed by data scientists. All this makes the hunt down for skilled data scientists even more difficult.

Fortunately, DexLab Analytics is here with its top of the line data science courses in Gurgaon. The courses offered by the prominent institute are intensive, well-crafted and entirely industry-relevant. For more information on data analyst course in Delhi NCR, visit our homepage.

 
The blog has been sourced from ―
www.forbes.com/sites/nvidia/2018/11/21/how-deep-learning-solves-retail-forecasting-challenges/#6cf36740db18
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more