data science online learning Archives - Page 4 of 11 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Application of Data Science in Healthcare

Application of Data Science in Healthcare

In today’s data-driven world,  it is hard to ignore the growing need for data science, as businesses are busy applying data to devise smarter marketing strategies and urging their employees to upgrade themselves. Data Science training is gaining ground as lucrative career opportunities are beckoning the younger generation.

So, it is not surprising that a crucial sector like healthcare would apply data science to upgrade their service. Health care is among one of the many sectors that have acknowledged the benefits of data science and adopted it.

The Healthcare industry is vast and it comprises many disciplines and branches that intercross generating a ton of unstructured data which if processed and analyzed could lead to revolutionary changes in the field.

Here is taking a look at how the industry can benefit by adopting data science techniques

Diagnostic error prevention

No matter what health issues one might have, accurate diagnosing is the first step that helps a physician prescribe treatment procedure. However, there have been multiple cases where a diagnostic error has led to even death. With the implementation of data science technology, it is now possible to increase the accuracy of the procedures as the algorithm sifts data to detect patterns and come up with accurate results.

Medical imaging procedures such as MRI, X-Ray can now detect even tiniest deformity in the organs which were erstwhile impossible, due to the application of deep learning technology.  Advanced models such as MapReduce is also being put to use to enhance the accuracy level.

Bioinformatics

 Genomics is an interesting field of research where researchers analyze your DNA to understand how it affects your health. As they go through genetic sequences to gain an insight into the correlation, they try to find how certain drugs might work on a specific health issue.

The purpose is to provide a more personalized treatment program. In order to process through the highly valuable genome data, data science tools such as SQL are being applied. This field has a vast scope of improvement and with more advanced research work being conducted in the field of Bioinformatics, we can hope for better results.  Researchers who have studied Data science using python training, would prove to be invaluable assets for this specific field.

Health monitoring with wearables

Healthcare is an ongoing process, if you fall ill, you get yourself diagnosed and then get treatment for the health condition you have. The story in most cases does not end there, with the number of patients with chronic health problems increasing, it is evident that constant monitoring of your health condition is required to prevent your health condition from taking a worse hit.  Data science comes into the picture with wearables and other forms of tracking devices that are programmed to keep your health condition in check. Be it your temperature or, heartbeat the sensors keep tracking even minute changes, the data is analyzed to enable the doctors take preventive measures, the GPS-enabled tracker by Propeller, is an excellent case in point.

Faster approval of new drugs

The application of data science is not restricted to only predicting, preventing, and monitoring patient health conditions. In fact, it has reached out to assist in the drug development process as well. Earlier it would take almost a decade for a drug to be accessible in the market thanks to the numerous testing, trial, and approval procedures.

But, now it is possible to shorten the duration thanks to advanced data science algorithms that enable the researchers to simulate the way a drug might react in the body. Different models are being used by the researchers to process clinical trial data, so, that they can work with different variables. Data Science course enables a professional to carry out research work in such a highly specialized field.

Data Science Machine Learning Certification

In the context of Covid-19

With the entire world crippling under the unprecedented impact of COVID-19, it is needless to point out that the significance of data science in the healthcare sector is only going to increase. If you have been monitoring the social media platforms then you must have come across the #FlattenTheCurve.

The enormity of the situation and erroneous data collection both have caused issues, but, that hasn’t deterred the data scientists. Once, the dust settles they will have a mountainous task ahead of them to process through a massive amount of data the pandemic will have left behind, to offer insight that might help us take preventive measures in the future.

The field of data science has no doubt made considerable progress and so has the field of modern healthcare. Further research and collaboration would enable future data scientists to provide a better solution to bolster the healthcare sector.

 


.

Why Learning Python is Important for Data Scientists Today

Why Learning Python is Important for Data Scientists Today

Data Science is the new rage and if you are looking to make a career, you might as well choose to become a data scientist. Data Scientists work with large sets of data to draw valuable insights that can be worked upon. Businesses rely on data scientists to sieve through tonnes of data and mine out crucial information that becomes the bedrock of business decisions in the future.

With the growth of AI, machine learning and predictive analytics, data science has come to be one of the favoured career choices in the world today. It is imperative for a data scientist to know one of more programming languages from any of those available – Java, R, Python, Scala or MATLAB.

However, Data Scientists prefer Python to other programming languages because of a number of reasons. Here we delve into some of them.

Popular

Python is one of the most popular programming languages used today. This dynamic language is easy to pick up and learn and is the best option for beginners. Secondly, it interfaces with complex high performance algorithms written in Fortran or C. It is also used for web development, data mining and scientific computing, among others.

Preferred for Data Science

Python solves most of the daily tasks a data scientist is expected to perform. “For data scientists who need to incorporate statistical code into production databases or integrate data with web-based applications, Python is often the ideal choice. It is also ideal for implementing algorithms, which is something that data scientists need to do often,” says a report

Packages

Python has a number of very useful packages tailored for specific functions, including pandas, NumPy and SciPy. Data Scientists working on machine learning tasks find scikit-learn useful and Matplotlib is a perfect solution for graphical representation and data visualization in data science projects.

Easy to learn

It is easy to grasp and that is why not only beginners but busy professionals also choose to learn Python for their data science needs. Compared to R, this programming language shows a sharper learning curve for most people choosing to learn it.

Scalability

Unlike other programming languages, Python is highly scalable and perceptive to change. It is also faster than languages like MATLAB. It facilitates scale and gives data scientists multiple ways to approach a problem. This is one of the reasons why Youtube migrated to Python.

Libraries

Python offers access to a wide range of data science and data analysis libraries. These include pandas, NumPy, SciPy, StatsModels, and scikit-learn. And Python will keep building on these and adding to these.  These libraries have made many hitherto unsolvable problems seem easy to crack for data scientists.

Data Science Machine Learning Certification

Python Community

Python has a very robust community and many data science professionals are willing to create new data science libraries for Python users. The Python community is tight-knit one and very active when it comes to finding a solution. Programmers can connect with community members over the Internet and Codementor or Stack Overflow.

So, that is why data scientists tend to opt for Python over other programming languages. This article was brought to you by DexLab Analytics. DexLab Analytics is premiere data science training institute in Gurgaon.

 


.

Dexlab Analytics Starts National Level Training On Data Analysis Using OpenAir package of R

Dexlab Analytics Starts National Level Training On Data Analysis Using OpenAir package of R

From Saturday, 6th June 2020, a team of senior consultants at DexLab Analytics has been conducting a national level training for more than 40 participants who are research scholars, MPhil students and professors from colleges like IIT, CSIR, BHU and NIT, among others. This one of a kind, crowd-funded training is being conducted on “Environment Air pollution Data Analysis using OpenAir package of R”.

The training is a result of the lockdown wherein DexLab Analytics is working towards its upskilling initiatives for professionals and subject matter experts across India. The training is being conducted in DexLab Analytics’TraDigital format – real time, online, classroom styled, instructor-led training.

The attendees will be taking up these interactive classes from the safety and comfort of their homes. They will be getting assignments, learning material and recordings virtually.

The one-month-long training will be conducted in R Programming, Data Science and Machine Learning using R Programming from the perspective of Environmental Science. DexLab Analytics is conducting this training module in line with the tenets of ‘Atmanirbhar India’.

Data Science Machine Learning Certification

DexLab Analytics is a leading data science training institute in India with a vast array of state-of-the-art analytics courses, attracting a large number of students nationwide. It offers high-in-demand professional courses like Big Data, R Programming, Python, Machine Learning, Deep Learning, Data Science, Alteryx, SQL, Business Analytics, Credit Risk modeling, Tableau, Excel etc. to help young minds be data-efficient. It has its headquarters in Gurgaon, NCR.

 

For more information, click here – 

www.prlog.org/12825521-dexlab-analytics-starts-national-level-training-on-data-analysis-using.html

 


.

Mr Debuka is Key Speaker at EIILM’s Webinar

Mr Debuka is Key Speaker at EIILM’s Webinar

DexLab Analytics is proud to announce that its CMO, Vivek Debuka, was the Key Speaker at a webinar hosted by the Eastern Institute for Integrated Learning in Management (EIILM), Kolkata on “Changing Trend in Business in the Post COVID-19 World”.

The webinar was held on 30th May, 2020 from 5pm – 6pm. Students of the Eastern Institute for Integrated Learning in Management, the chairman and director of the EIILM Dr R P Banerjee said, were excited and eager to attend the webinar, especially because the topic was an emerging one and relevant to their corporate career goals.

On May 27, EIILM posted a Facebook post that read – “EIILM’s initiative for enriching young minds with post COVID-19 business trends!!!! The Covid era has brought about a lot of uncertainties that have resulted in a new thought process in the ever-changing world of business. To orient our budding managers with the dynamic business trends, EIILM – KOLKATA Family has scheduled a Webinar on 30 May 2020, from 5-6 pm under the title “Changing Trend in Business in the Post Covid 19 World”.

Data Science Machine Learning Certification

DexLab Analytics is a leading data science training institute in India with a vast array of state-of-the-art analytics courses, attracting a large number of students nationwide. It offers high-in-demand professional courses like Big Data, R Programming, Python, Machine Learning, Deep Learning, Data Science, Alteryx, SQL, Business Analytics, Credit Risk modeling, Tableau, Excel etc. to help young minds be data-efficient. It has its headquarters in Gurgaon, NCR.

 
For more information click on the link here www.prlog.org/12824488-dexlab-analytics-cmo-was-key-speaker-at-eiilm-webinar.html
 


.

The link between AI, ML and Data Science

The link between AI, ML and Data Science

The fields of Artificial Intelligence, Machine Learning and Data Science cover a vast area of study and they should not be confused with each other. They are distinct branches of computational sciences and technologies.

Artificial Intelligence

Artificial intelligence is an area of computer science wherein the computer systems are built such that they can perform tasks with the same agility as that done through human intelligence. These tasks range from speech recognition to image recognition and decision making systems among others.

This intelligence in computer systems is developed by human beings using technologies like Natural Processing Language (NLP) or computer vision among others. Data forms an important part of AI systems. Big Data, vast stashes of data generated for computer systems to analyze and study to find patterns in is imperative to Artificial Intelligence. 

Machine learning

Machine learning is a subset of artificial intelligence. Machine learning is used to predict future courses of action based on historical data. It is the computer system’s ability to learn from its environment and improve on its findings.

For instance, if you have marked an email as spam once, the computer system will automatically learn to mark as spam all future emails from that particular address. To construct these algorithms developers need large amounts of data. The larger the data sets, the better the predictions. A subset of Machine Learning is Deep Learning, modeled after the neural networks of the human brain.

Data Science Machine Learning Certification

Data Science:

Data science is a field wherein data scientists derive valuable and actionable insights from large volumes of data. The science is based on tools developed with the knowledge of various subjects like mathematics, computer programming, statistical modeling and machine learning.

The insights derived by data scientists help companies and business organizations grow their business. Data science involves analysis of data and modelling of data among other techniques like data extraction, data exploration, data preparation and data visualization. As data volumes grow more and more vast, the scope of data science is also growing each passing day, data that needs to be analyzed to grow business.

Data Science, Machine Learning and Artificial Intelligence

Data Science, Artificial Intelligence and Machine Learning are all related in that they all rely on data. To process data for Machine Learning and Artificial Intelligence, you need a data scientist to cull out relevant information and process it before feeding it to predictive models used for Machine Learning. Machine Learning is the subset of Artificial Intelligence – which relies on computers understanding data, learning from it and making decisions based on their findings of patterns (virtually impossible for the human eye to detect manually) in data sets. Machine Learning is the link between Data Science and Artificial Intelligence. Artificial Intelligence uses Machine Learning to help Data Science get solutions to specific problems.

The three technological fields are thus, closely linked to each other. For more on this, do not forget to check-out the artificial intelligence certification in Delhi NCR from DexLab Analytics.


.

Netflix develops in own data science management tool and open sources it

Netflix develops in own data science management tool and open sources it

Netflix in December last year introduced its own python framework called Metaflow. It was developed to apply to data science with a vision to make scalability a seamless proposition. Metaflow’s biggest strength is that it makes running the pipeline (constructed as a series of steps in a graph) easily movable from a stationary machine to cloud platforms (currently only the Amazon Web Services (AWS)).

What does Metaflow really do? Well, it primarily “provides a layer of abstraction” on computing resources. What it translates to is the fact that a programmer can concentrate on writing/working code while Metaflow will handle the aspect which ensures the code runs on machines.

Metaflow manages and oversees Python data science projects addressing the entire data science workflow (from prototype to model deployment), works with various machine learning libraries and amalgamates with AWS.

Machine learning and data science projects require systems to follow and track the trajectory and development of the code, data, and models. Doing this task manually is prone to mistakes and errors. Moreover, source code management tools like Git are not at all well-suited to doing these tasks.

Metaflow provides Python Application Programming Interfaces (APIs) to the entire stack of technologies in a data science workflow, from access to the data, versioning, model training, scheduling, and model deployment, says a report.

Netflix built Metaflow to provide its own data scientists and developers with “a unified API to the infrastructure stack that is required to execute data science projects, from prototype to production,” and to “focus on the widest variety of ML use cases, many of which are small or medium-sized, which many companies face on a day to day basis”, Metaflow’s introductory documentation says.

Data Science Machine Learning Certification

Metaflow is not biased. It does not favor any one machine learning framework or data science library over another. The video-streaming giant deploys machine learning across all aspects of its business, from screenplay analysis, to optimizing production schedules and pricing. It is bent on using Python to the best limits the programming language can stretch. For the best Data Science Courses in Gurgaon or Python training institute in Delhi, you can check out the Dexlab Analytics courses online.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

5 Full-Stack Data Science Projects You Need to Add to Your Resume Now

5 Full-Stack Data Science Projects You Need to Add to Your Resume Now

Small or big, most of the organizations seek aspiring data scientists. The reason being this new breed of data experts helps them stay ahead of the curve and churns out industry-relevant insights.

It hardly matters if you are a fresher or a college dropout, with the right skill-set and basic understanding of nuanced concepts of machine learning, you are good to go and pursue a lucrative career in data science with a decent pay scale.

However, whenever a company hires a new data scientist, the former expects that the candidate had some prior work experience or at least have been a part in a few data science-related projects. Projects are the gateway to hone your skills and expertise in any realm.  In such projects, a budding data scientist not only learns how to develop a successful machine learning model but also solves an array of critical tasks, which needs to be fulfilled single-handedly. The tasks include preparing a problem sheet, crafting a suitable solution to the problem, collect and clean data and finally evaluate the quality of the model.

Below, we have charted down top 5 full-stack data science projects that will boost your efforts of preparing an interesting resume.

Deep Learning and AI using Python

Face Detection

In the last decade, face detection gained prominence and popularity across myriad industry domains. From smartphones to digitally unlocking your house door, this robust technology is being used at homes, offices and everywhere.

Project: Real-Time Face Recognition

Tools: OpenCV, Python

Algorithms: Convolution Neural Network and other facial detection algorithms

Spam Detection

Today, the internet plays a crucial role in our lives. Nevertheless, sharing information across the internet is no mean feat. Communication systems, such as emails, at times, contain spam, which results in decreased employee productivity and needs to be avoided.

Project: Spam Classification

Tools: Python, Matplotlib

Algorithm: NLTK

Sentiment Analysis

If you are from the Natural Language Processing and Machine Learning domain, sentiment analysis must have been the hot-trend topic. All kinds of organizations use this technology to understand customer behaviors and frame strategies. It works by combining NLP and suave machine learning technologies.

Project: Twitter Sentiment Analysis

Tools: NLTK, Python

Algorithms: Sentiment Analysis 

Time Series Prediction

Making predictions regarding the future is known as extrapolation in the classical handling of time series data. Modern researchers, however, prefer to call it time series forecasting. It is a revolutionary phenomenon of taking models perfect on historical data and using them for future prediction of observations.

Project: Web Traffic Time Series Forecasting

Tools: GCP

Algorithms: Long short-term memory (LSTM), Recurrent Neural Networks (RNN) and ARIMA-based techniques

2

Recommender Systems

Bigwigs, such as Netflix, Pandora, Amazon and LinkedIn rely on recommender systems. The latter helps users find out new and relevant content and items. In simple terms, recommender systems are algorithms that suggest users meaningful items based on his preferences and requirements.

Project: Youtube Video Recommendation System

Tools: Python, sklearn

Algorithms: Deep Neural Networks, classification algorithms

If you are a budding data scientist, follow DexLab Analytics. We are a premier data science training platform specialized in a wide array of in-demand skill training courses. For more information on data science courses in Gurgaon, feel free to drop by our website today.

 

The blog has been sourced fromwww.analyticsindiamag.com/5-simple-full-stack-data-science-projects-to-put-on-your-resume

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Top 6 Data Science Interview Red Flags

Top 6 Data Science Interview Red Flags

Excited to face your first data science interview? Probably, you must have double-checked your practical skills and theoretical knowledge. Technical interviews are tough yet interesting. Cracking them and bagging your dream job is no mean feat.

Thus, to lend you a helping hand, we’ve compiled a nifty list of some common red flags that plague data science interviews. Go through them and decide how to handle them well!

Boring Portfolio

Having a monotonous portfolio is not a crime. Nevertheless, it’s the most common allegation against data scientists by the recruiters. Given the scope, you should always exhibit your organizational and communication abilities in an interesting way to the hiring company. A well-crafted portfolio will give you instant recognition, so why not try it!

Deep Learning and AI using Python

Sloppy Code

Of course, your analytical skills, including coding is going to be put to test during any data science interview. A quick algorithm coding test will bring out the technical value you would add to the company. In such circumstances, writing a clumsy code or a code with too many bugs would be the last thing you want to do. Improving the quality of coding will accelerate your hiring process for sure.

Confusion about Job Role

No wonder if you walk up to your interviewer having no idea about your job responsibilities, your expertise and competence will be questionable. The domain of data science includes a lot of closely related job profiles. But, they differ widely in terms of skills and duties. This is why it’s very important to know your field of expertise and the skills your hiring company is looking for.

Zero Hands-on Experience

A decent, if not rich, hands-on experience in Machine Learning or Data Science projects is a requisite. Organizations prefer candidates who have some experience. The latter may include data cleaning projects, data-storytelling projects or even end-to-end data projects. So, keep this in mind. It will help you score well in the upcoming data science interview.

Lack of Knowledge over Data Science Technicalities

Data analytics, data science, machine learning and AI – are all closely associated with one another. To excel in each of these fields you need to possess high technical expertise. Being technically sound is the key. An interview can go wrong if the recruiter feels you lack command over data science technicalities, even though you have presented an excellent portfolio of projects.

Therefore, you have to be excellent in coding and harbor a vast pool of technical knowledge. Also, be updated with the latest industry trends and robust set of algorithms.

Ignoring the Basics

It happens. At times, we fumble while answering some very fundamental questions regarding our particular domain of work. However, once we come out of the interview venue, we tend to know everything. Reason: lack of presence of mind. Therefore, the key is to be confident. Don’t lose your presence of mind in the stifling interview room.

Thus, beware of these drooping gaps; being a victim of these critical objections might keep you away from bagging that dream data analyst job. Instead, work on them and win a certain edge over others while cracking the toughest data science interview session.

2

Note:

If interested in Data Science Courses in Gurgaon, check out DexLab Analytics. We are a premier training platform specialized in in-demand skills, including machine learning using Python, Alteryx and customer analytics. All our courses are industry-relevant and crafted by experts.

 

The blog has been sourced from upxacademy.com/eleven-most-common-objections-in-data-science-interviews-and-how-to-handle-them

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Basics of a Two-Variable Regression Model: Explained

Basics of a Two-Variable Regression Model: Explained

In continuation of the previous Regression blog, here we are back again to discuss the basics of a two-variable regression model. To read the first blog from the Regression series, click here www.dexlabanalytics.com/blog/a-regression-line-is-the-best-fit-for-the-given-prf-if-the-parameters-are-ols-estimations-elucidate.

In Data Science, regression models are the major driver to interpret the model with necessary statistical methods, practically as well as theoretically. One, who works extensively with business data metrics, will be able to solve various tough problems with the help of a regression theory. The key insight of the regression models lies in interpreting the fitness of the models. But it differs from the standard machine learning techniques such that, for improvement in the performance of the model being predicted, the major interpretable coefficients are never sacrificed. Thus, a sense in regression models can be considered as the most important tool to be chosen for solving any practical problem.

2

Let’s consider a simple example to understand regression analysis from scratch. Say, we want to predict the sales of a Softlines eCommerce company for this year during the festivals of Diwali. There are a lot of factors to generate impacts on the sales value, as there are hundreds of factors persisting within the model. We can consider our own judgement to get the impacting factors. Now, here in our model, the value of sales that we want to predict is the dependent variable, whereas the impacting factors are considered as the independent variables. To analyse this model in terms of regression, we need to gather all the information about the independent variables from the past few years, and then act on it according to the regression theory.

Before getting into the core theory, there are some basic assumptions for such a two-variable regression model and they are as follows:

  • Variables are linearly related: The variables in a 2-variable Regression Model are linearly related, the linearity being in parameters, though not always in variables, i.e. the power in which the parameters appear should be of 1 only and should not be multiplied or divided by any other parameters. These linearly related variables are basically of two types (i) independent or explanatory variables & (ii) dependent or response variables.
  • Variables can be represented graphically: The idea behind this assumption guarantees that observations must be real numbers represented on graph papers.
  • Residual term and the estimated value of the variables are uncorrelated.
  • Residual terms and explanatory variables are uncorrelated.
  • Error variables are uncorrelated with mean 0 & common variance σ2

Deep Learning and AI using Python

Now, how can a PRF for expanding an economic relationship between 2 variables be specified?

Well, Population regression function, or more generally, the population regression curve, is defined as the locus of the conditional means of the dependent variables, for a fixed value of the explanatory variables. More simply, it is the curve connecting the means of the sub-populations of Y corresponding to the given values of the regressor X.

Formally, a PRF is the locus of all conditional means of the dependent variables for a given value of the explanatory variables. Thus; the PRF as economic theory would suggest would be:

Where 9(X) is expected to be an increasing function of X, if the conditional expectation is linear in X. then

Hence, for any ith observations:

However, the actual observation for the dependent variable is Yi. Therefore; Yi – E(Y/Xi) = ui, which is the disturbance term or the stochastic term of the Regression Model.

Thus,

…………………… (A)

  • is the population regression function and this form of specifying the population regression function is called the stochastic specification of the PRF.

Stochastic Specification of the Model:

Yi = α + βXi + ui is referred to as the stochastic specification of the Population Regression Function, where ui is the stochastic or the random disturbance term. It explains everything’s net influence other than X variable on the ith observation. Thus, ui is a surrogate or proxy for all omitted or neglected variables which may affect Y but is not included in the model. The random disturbance term is incorporated into the model with the following assumptions:-

Proof:

Taking conditional expectation as both sides, we get:

Hence; E(ui) = 0

cov(ui,uj) = E(ui uj ) = 0 ∀ i ≠ j i.e. the disturbance terms are distributed independently of each other.

Proof:

Two variables are said to be independently distributed, or stochastically independent; if the conditional distributions are equal to the corresponding marginal distributions.

Hence; cov(ui,uj )= E(ui uj ) = 0 Thus, no auto correction is present among ui,s i.e. ui,s. s are identically and independently distributed Random Variables. Hence, ui,s are all Random Samples.

Proof:

The conditional variance between two error terms can be given as given independence &

 

 

All these assumptions can be embodied in the simple statement: ui~N(0,σ2) where ui,s are iid’s ∀ I, Which heads “the ui are independently distributed identically distributed with mean 0 & variance σ2”.

Last Notes

The benefits of regression analysis are immense. Today’s business houses literally thrive on such analysis. For more information, follow us at DexLab Analytics. We are a leading data science training institute headquartered in Delhi NCR and our team of experts take pride in crafting the most insight-rich blogs. Currently, we are working on Regression Analysis. More blogs are to be followed on this model. Keep watching!

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more