data analytics Archives - Page 12 of 12 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Interesting Statistics of Employment: 5 Figures

Interesting Statistics of Employment: 5 Figures

It is a common sight to see the old and young talking about the job market that is going through a slump, regardless of the time or the economic conditions of the country; this picture usually is accompanied with some “cutting chai” at tea stalls on busy streets or cool cafes at the malls with the slurp of espresso with a tiny straw where the average upper-middle class youth talk about their first-world dreams while breathing progressive third-world air.

But is that really always the case? Data management or statistical analysis as we have established several times before, is sending the job market into hyper-drive, attracting millions of MNCs into the Indian soil and populating the job search portals with millions of opportunities in data.  But dare we only make statements, we are statisticians and we know that numbers do speak louder than simple statements.

So, in keeping with our love for figures and facts backed by data, DexLab Analytics has compiled a list of interesting statistics about the job market and the process of hiring.

#1 Each and every major corporate job position attracts a minimum of 250 applications!

Out of all these applications only 4 to 6 resumes get shortlisted and are called for interviews. Out of these 4 to 6 people only 1 lucky candidate is selected.

#2 Every job seeker takes into account 5 factors before accepting the position at a firm.

They are –

  • The company culture, values and overall work environment
  • Distance, ease of commute, location
  • Prospects of maintaining work/life balance
  • Growth prospects in career and
  • Pay package and compensation.

#3 Almost 94 percent of sales personnel revealed that base salary is the most important determining factor in the compensation package for them.

But 62 percent of sales personnel say that commission is the most important element.

#4 Out of 3 employees at least 2 say that most employers do not do or do not know how to use social media platforms for promoting job openings.

And 3 out of 4 employees also believe that most companies and employers do not know how to promote their brand on social media networks as well.

#5 Social media platforms are used to search for jobs by 79 percent of jobseekers.

This figure rises to 86 percent for younger job seekers who are in their initial 10 years of job search.

To learn more about statistical analysis and for Data analyst certification in Gurgaon drop by our website at DexLab Analytics.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Measuring Why Correlation does not Causation

How about we first examine the thought of the connection and its application in the process of data analysis? Connection analysis is being utilized to distinguish or evaluate the relationship between two quantitative variables. The existence of variables should be between either dependent or free variable. To quantify between the reaction and indicator variable ‘r’ is used, which is the Connection Coefficient. The connection coefficient’s indication shows the affiliation’s bearing. The bearing should be either positive affiliation or negative affiliation. For instance, a connection of r = 0.95 demonstrates an in number, positive relationship between the two variables. Then again, if a relationship r = – 0.3 demonstrates a powerless, negative relationship between the two variables. The size of the relationship coefficient demonstrates the affiliation’s quality. In connection analysis, we can fall upon just four situations of affiliation.

qualitative

Situation 1 – The two variables have an in-number positive connection where r = 0.9

Situation 2 – The two variables have a powerless relationship where r = 0.3

Situation 3 – The two variables do not have any connection where r = 0

Situation 4 – The two variables have an in-number negative connection where r = – 0.9

Utilization of Case Correlation:

Promotion supervisor needs to distinguish the discriminating variable that is influencing the Conversion Rate of a site.

Business administrators need to discover whether the web journal redesign, identified with free arrival of online games, is creating the extra offer of income on the agreed day.

DayVisitors – Free Online Games Release UpdateRevenue
1180001500
2120001200
3150001600
410000900
58000950
6140001300
7120001100
8160001650
9100001050
10200001600

You may utilize excel function CORREL () in order to recognize the connection coefficient to quantify the relationship between the guests and the income. The relationship coefficient r for the aforementioned set of data is 0.90. It demonstrates that there is a solid relationship between the variable guests and income. Another flawless case for an in-number negative relationship is that at whatever point the precipitation diminishes, the horticulture’s yield diminishes. The relationship analysis likewise serves to further develop the analysis in multivariate insights.

 

Connection does not infer Causation:

This happens as soon as you attempt to discover the relationship between two autonomous variables or between an indigent variable and free variable. Association does not infer Causation implies those occasions that take place to correspond with one another – are not as a matter essentially related in a causal manner. This might be passed on that the variable X does not have an impact on the variable Y. It’s only an occurrence. We need to further accept or make it a theory that X is bringing about the impact on the Y variable. In the aforementioned utilization case, we discovered that the connection coefficient was at 0.89. It just demonstrates that there is a solid relationship between our Y Variable income and the X variable guests. Nonetheless, we don’t have any verification that if there is an expansion in the guests then the income additionally increments. No circumstances and end results is oblique here.

Microsoft acquires VoloMetrix

Microsoft has acquired VoloMetrix to boost organizational analytics capabilities. This acquisition will combine VoloMetrix experience, technology and track record of success with Office 365 and Microsoft’s previously announced Delve Organizational Analytics. With this acquisition, Microsoft is aiming to fulfil its ambition to reinvent productivity and business process and how it will deliver new value to its customers with organizational analytics.
Organizational analytics helps businesses to measure performance metrics such as productivity, effectiveness and efficiency. This would lead to improve the profitability of the organization.

Unquestionably, the most important asset any company has is its people. Every day, it is people that make the decisions that effectively determine every company outcome. Historically there has been no data-driven way to connect employee behavior to business outcomes. Today, with the advent of powerful big data and predictive tools, a new field is emerging to solve this problem: people analytics. VoloMetrix is the leading people analytics company, using big data to optimize businesses’ performance by simplifying organizational structure, boosting employee engagement and increasing sales team effectiveness. Working with Fortune 100 companies worldwide, VoloMetrix’s patented technology extracts and analyzes anonymous aggregated collaboration data to reveal unprecedented insights into how employee behaviors drive business outcomes.

Ryan Fuller, Co-Founder and CEO at VoloMetrix said in his blog, He had started VoloMetrix 4.5 years ago with the belief that people are every company’s most valuable asset and the mission to transform knowledge worker productivity through data, transparency and feedback loops. His goals were to fundamentally change companies understanding of how their people drive their outcomes and empower every employee to take back their time and have the very best tools to be successful. He had opportunity to work with dozens of global 2000 companies to prove out the science of Organizational Analytics and apply it to help organization.
VoloMetrix has an excellent capability and the applications of the software for the organizations to deliver the productivity improvement metrics.
It has three high level solutions for the organizations:

1.    Sales Productivity
2.    Organizational Simplification
3.    Employee Engagement

Each solution has various sub dimension capabilities to solve the problems related to organizational analytics. They are Margin Optimization, Coordination, Predictive Analytics, Time Budgeting, Process delivery, Cost reduction, Workforce planning, Org network analysis, Collaboration. These capabilities address the area where the organization can leverage to improve the productivity.

Who needs what?

Sales Productivity – Sales Leadership, Sales Operations, CMOs and CFOs.
Organizational Simplification – CIOs, COOs, Corporate Strategy Teams and Consultants
Employee Engagement – Corporate Strategy, HR, CEOs, COOs and Strategy Consultants.
This acquisition can certainly help Microsoft to provide the best possible integration of VoloMetrix into Office 365.

Quantitative Analysis 1 – Five Number Summary

To be a successful analyst or be a part of great analytics team, there are 3 important dimensions one would aspire to be or have. They are technical, business and tools. Hence, we would begin with one of the sub dimension of the technical skills, i.e. being quantified self or developing quantitative skills.

 Quantitative Analysis 1 – Five Number Summary

As per the Informs, the definition of Analytics shall be:

  Continue reading “Quantitative Analysis 1 – Five Number Summary”

Call us to know more