data analyst institute Archives - Page 8 of 11 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

How Data Analytics Influences Holiday Retail Experience [Video]

Thanksgiving was right here! Half of the globe witnessed some crazy shopping kicking off the entire holiday season, and retailers had a whale of a time, offering luscious discounts and consumer gifts at half the prices.

 
How Data Analytics Influences Holiday Retail Experience
 

Before the weekend Thanksgiving sale, 69% of Americans, close to 164 million people across the US were estimated to shop– and they had planned to shell out up to 3.4% more money as compared to last year’s Black Friday and Cyber Monday sale. The forecasts came from National Retail Federation’s annual survey, headed by Prosper Insights & Analytics.

Continue reading “How Data Analytics Influences Holiday Retail Experience [Video]”

Data to Fill in the Gaps: Using Data Analytics to Seek Retail Advantage

Retailers need to know their customers well – who they are, what stuffs they like to buy, how they would pay and what they think about the product or service. The best part is that there’s an ocean of data now available to fill in the gaps. Every time a customer visits the store, a long trail of customer data churns out for the retailers to explore.

 
Data to Fill in the Gaps: Using Data Analytics to Seek Retail Advantage
 

With the help of this data, the retailers improve sales figures, customer service and interaction and their product offerings. Leveraging data is crucial. According to Gartner, retailers seek advanced analytic capabilities to shine bright in this age of digitized market solutions.

Continue reading “Data to Fill in the Gaps: Using Data Analytics to Seek Retail Advantage”

Internet of Things: It’s Much More Than What It Appears to Be

Internet of Things: It’s Much More Than What It Appears to Be

What’s all the hype about “the next big thing”? Have you got it yet? Nope? It’s not owing to a lack of imagination, but an observation.

Currently, the Internet of Things is the big buzz. It’s all about enhancing machine-to-machine communication – being structured on cloud computing and systems of data-gathering sensors, the connection is entirely virtual, mobile and instantaneous.

Big Data And The Internet Of Things – @Dexlabanalytics.

What is IoT?

In simple terms, the concept of IoT stresses on connecting any device with the Internet – including cellphones, headphones, washing machines, lamps, coffee makers, wearable devices and almost anything that comes in your mind. The IoT is a colossal network of connected Things (inclusive of people) – the famous analyst firm Gartner says by 2020 there will be more than 26 billion connected devices in this world.

Explaining the Everlasting Bond between Data and Risk Analytics – @Dexlabanalytics.

What makes it so popular?

As we now know, IoT is a network of things and people, where communication takes place through numerous wireless and wired technologies and it comes with a wide set of advantages. Following are some of the advantages of this new breed of technology:

A better, less-complicated life

Imagine a life, where what you seek will be delivered to you right away, before you even ask for it. It may appear to you that you are dropped right into a scene from your favorite sci-fi movie or novel – the moment your morning alarm starts ringing, your bathtub automatically starts getting filled with hot water; when you leave your home, the lights get turned off automatically and doors lock itself on its own; your car takes you to the office through the less-congested roadway and when you return home, your home lights automatically start to switch on and lastly your air conditioner adjusts the temperature of your room once you are ready to hit the bed. Proper use of IoT makes your life easier and effortlessly simple.

Is Change the Only Constant: How Analytics has Changed, while Staying the Same Over the Last Decade – @Dexlabanalytics.

Less accident, better safety

How would it be if for an example you get a heart attack while driving back home and your smartwatch detects it and deploys autopilot mode in your car so that it straightaway takes you directly to the nearest hospital? On the way, your cellphone can dial up the hospital staffs and inform them about the current condition of the patient to help you get the best treatment possible.

Harnessing the power of data

Utilizing the power of data is awesome. Harnessing data to simplify things is the next best thing in today’s world. Living a life straight out of sci-fi movies is awesome, but practically, there’s still some time left for IoT to become a hardcore reality. Once IoT makes its way into our lives, a set of smart devices powered by sensors will take charge and make almost everything possible – whether it’s switching on the AC automatically when a person enters the room or driving a car to a destination without any driver.

IoT helps in taking better decisions in the best interest for businesses

Beyond making your lives easier, IoT possesses a bunch of capabilities – it’s a robust technology that collects the most valuable resource, i.e. data. Data helps businesses take better, well-informed decisions. 

Of all the recent technological developments, Internet of Things is considered to be one of the biggest trends to watch out for. In the next 5 years, it’s going to change lives forever!

To know more about the Internet of Things and more such digital trends, why don’t you settle for a good business analytics course in Delhi! DexLab Analytics is a premier Data Science training institute Gurgaon that offers hands-on experience to students alike.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Embedded Analytics: How it’s Revolutionizing Businesses Today?

Embedded Analytics: How it’s Revolutionizing Businesses Today?

 

Analytics is the key to modern business growth. But, developing it as a highly interactive analytical interface is challenging enough to exhaust the time and resources both. As a result, many businesses are shifting their focus to Embedded Analytics (EA) for their operations, workflows and decision-making capabilities. This new breed of analytics, known as Embedded Analytics helps businesses leverage the power of data to process them in the most useful manner.

Continue reading “Embedded Analytics: How it’s Revolutionizing Businesses Today?”

Discover the Best Industries to Have a Career in Data Science

Discover-the-Best-Industries-to-Have-a-Career-in-Data-Science

Data fires up everything, nowadays. And data science is gaining exceptional traction in the job world, as data analytics, machine learning, big data, and data mining are fetching relevance in the mainstream tech world. By 2025, it is being expected that data science industry will reach $16 billion in value – this is why landing a job in data science domain is the next big thing!

The skills you will imbibe as a data scientist would be incredible, powerful and extremely valuable. You can easily a bag a dream job in corporate moguls, like Coca-Cola, Uber, Ford Motors and IBM, as well as play a significant role in any pro-social or philanthropic endeavors to make this world a better place to live in.

Check out these extremely interesting fields you could start your career in data science:

Biotechnology

No wonder, science and medicine are intricately related to each other. As the technology pushes boundaries, more and more companies are recommitting themselves towards a better public health by nabbing biotechnology. Being a data scientist, you would help in unraveling newer ways of studying large amounts of data – including machine learning, semantic and interactive technologies. Eventually, they would influence treatments, drugs-usage, testing procedures and much more.

Untitled

Energy

Power industry functions on data – and tons of it. Whether it’s about extracting mineral wealth from the earth’s crust or transporting crude oil or planning better storage facilities, the demand for data scientists is on the rise. Just as expanding oil fields ask for humongous amounts of data study, installing and refining cleaner energy production facilities relies on data about the natural environment and ways of modern construction. Data scientists are often given a ring to enhance safety standards and help companies recommit themselves towards better safety and environmental regulations.

Transportation

Recently, transportation is undergoing a robust change. For example, Tesla paved a new road of development and turned countless heads by unveiling a long-haul truck that could drive on its own. Though it’s not the first time, they are prone to lead the change.

Beyond self-driving vehicle technology, the transportation industry is looking for more efficient ways to preserve and transport energy. These advancements in technology works wonders when combined with better battery technology development – in simple terms, every individual field in transportation industry is believed to benefit from a motley team of data scientists.

jpg

Telecommunications

The internet is not only about tubes, but all about data. The future of the internet is here, with ever-increasing networks of satellites and user devices establishing communication through blockchain. Though they are yet to be used on large-scale, they have started making news. In situations like this, it would be difficult not to highlight the importance of data science and data architecture as they are becoming major influencers in the internet world. Whenever there is a dire need to make the public aware of a new product, we rely on user data – hence the role of data scientists is the key to a better future.

Today, data science is an interesting field to explore, and it is going to play an integral role as the stride in technology and globalization keeps expanding its base. If you have a keen eye for numbers, charts, patterns and analytics, this niche is perfectly suitable for you.

DexLab Analytics is a prime Data Science training institute Delhi that excels in offering advanced business analyst training courses in Gurgaon. Visit our official site for more information and make a mark in data analytics!

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How to Take the Plunge from IT to Analytics: Explained

With data analytics flourishing the manner it is, a lot of you hailing from IT background are sincerely thinking about making the remarkable switch from IT to Analytics. The skills you possess are transferable and the data structure fascinates you. You know very well, you will make more money in analytics and your career pathway will seek you great rewards. Yet something is stopping you from going!!!

 

How to Take the Plunge from IT to Analytics: Explained

 

What it is? Why are you feeling apprehensive to make the bold move that could change your life and career forever?

Continue reading “How to Take the Plunge from IT to Analytics: Explained”

Write ETL Jobs to Offload the Data Warehouse Using Apache Spark

Write ETL Jobs to Offload the Data Warehouse Using Apache Spark

The surge of Big Data is everywhere. The evolving trends in BI have taken the world in its stride and a lot of organizations are now taking the initiative of exploring how all this fits in.

Leverage data ecosystem to its full potential and invest in the right technology pieces – it’s important to think ahead so as to reap maximum benefits in IT in the long-run.

“By 2020, information will be used to reinvent, digitalize or eliminate 80% of business processes and products from a decade earlier.” – Gartner’s prediction put it so right!

The following architecture diagram entails a conceptual design – it helps you leverage the computing power of Hadoop ecosystem from your conventional BI/ Data warehousing handles coupled with real time analytics and data science (data warehouses are now called data lakes).

moderndwarchitecture

In this post, we will discuss how to write ETL jobs to offload data warehouse using PySpark API from the genre of Apache Spark. Spark with its lightning-fast speed in data processing complements Hadoop.

Now, as we are focusing on ETL job in this blog, let’s introduce you to a parent and a sub-dimension (type 2) table from MySQL database, which we will merge now to impose them on a single dimension table in Hive with progressive partitions.

Stay away from snow-flaking, while constructing a warehouse on hive. It will reduce useless joins as each join task generates a map task.

Just to raise your level of curiosity, the output on Spark deployment alone in this example job is 1M+rows/min.

The Employee table (300,024 rows) and a Salaries table (2,844,047 rows) are two sources – here employee’s salary records are kept in a type 2 fashion on ‘from_date’ and ‘to_date’ columns. The main target table is a functional Hive table with partitions, developed on year (‘to_date’) from Salaries table and Load date as current date. Constructing the table with such potent partition entails better organization of data and improves the queries from current employees, provided the to_date’ column has end date as ‘9999-01-01’ for all current records.

The rationale is simple: Join the two tables and add load_date and year columns, followed by potent partition insert into a hive table.

Check out how the DAG will look:

screen-shot-2015-09-28-at-1-44-32-pm

Next to version 1.4 Spark UI conjures up the physical execution of a job as Direct Acyclic Graph (the diagram above), similar to an ETL workflow. So, for this blog, we have constructed Spark 1.5 with Hive and Hadoop 2.6.0

Go through this code to complete your job easily: it is easily explained as well as we have provided the runtime parameters within the job, preferably they are parameterized.

Code: MySQL to Hive ETL Job

__author__ = 'udaysharma'
# File Name: mysql_to_hive_etl.py
from pyspark import SparkContext, SparkConf
from pyspark.sql import SQLContext, HiveContext
from pyspark.sql import functions as sqlfunc

# Define database connection parameters
MYSQL_DRIVER_PATH = "/usr/local/spark/python/lib/mysql-connector-java-5.1.36-bin.jar"
MYSQL_USERNAME = '<USER_NAME >'
MYSQL_PASSWORD = '********'
MYSQL_CONNECTION_URL = "jdbc:mysql://localhost:3306/employees?user=" + MYSQL_USERNAME+"&password="+MYSQL_PASSWORD 

# Define Spark configuration
conf = SparkConf()
conf.setMaster("spark://Box.local:7077")
conf.setAppName("MySQL_import")
conf.set("spark.executor.memory", "1g")

# Initialize a SparkContext and SQLContext
sc = SparkContext(conf=conf)
sql_ctx = SQLContext(sc)

# Initialize hive context
hive_ctx = HiveContext(sc)

# Source 1 Type: MYSQL
# Schema Name  : EMPLOYEE
# Table Name   : EMPLOYEES
# + --------------------------------------- +
# | COLUMN NAME| DATA TYPE    | CONSTRAINTS |
# + --------------------------------------- +
# | EMP_NO     | INT          | PRIMARY KEY |
# | BIRTH_DATE | DATE         |             |
# | FIRST_NAME | VARCHAR(14)  |             |
# | LAST_NAME  | VARCHAR(16)  |             |
# | GENDER     | ENUM('M'/'F')|             |
# | HIRE_DATE  | DATE         |             |
# + --------------------------------------- +
df_employees = sql_ctx.load(
    source="jdbc",
    path=MYSQL_DRIVER_PATH,
    driver='com.mysql.jdbc.Driver',
    url=MYSQL_CONNECTION_URL,
    dbtable="employees")

# Source 2 Type : MYSQL
# Schema Name   : EMPLOYEE
# Table Name    : SALARIES
# + -------------------------------- +
# | COLUMN NAME | TYPE | CONSTRAINTS |
# + -------------------------------- +
# | EMP_NO      | INT  | PRIMARY KEY |
# | SALARY      | INT  |             |
# | FROM_DATE   | DATE | PRIMARY KEY |
# | TO_DATE     | DATE |             |
# + -------------------------------- +
df_salaries = sql_ctx.load(
    source="jdbc",
    path=MYSQL_DRIVER_PATH,
    driver='com.mysql.jdbc.Driver',
    url=MYSQL_CONNECTION_URL,
    dbtable="salaries")

# Perform INNER JOIN on  the two data frames on EMP_NO column
# As of Spark 1.4 you don't have to worry about duplicate column on join result
df_emp_sal_join = df_employees.join(df_salaries, "emp_no").select("emp_no", "birth_date", "first_name",
                                                             "last_name", "gender", "hire_date",
                                                             "salary", "from_date", "to_date")

# Adding a column 'year' to the data frame for partitioning the hive table
df_add_year = df_emp_sal_join.withColumn('year', F.year(df_emp_sal_join.to_date))

# Adding a load date column to the data frame
df_final = df_add_year.withColumn('Load_date', F.current_date())

df_final.repartition(10)

# Registering data frame as a temp table for SparkSQL
hive_ctx.registerDataFrameAsTable(df_final, "EMP_TEMP")

# Target Type: APACHE HIVE
# Database   : EMPLOYEES
# Table Name : EMPLOYEE_DIM
# + ------------------------------- +
# | COlUMN NAME| TYPE   | PARTITION |
# + ------------------------------- +
# | EMP_NO     | INT    |           |
# | BIRTH_DATE | DATE   |           |
# | FIRST_NAME | STRING |           |
# | LAST_NAME  | STRING |           |
# | GENDER     | STRING |           |
# | HIRE_DATE  | DATE   |           |
# | SALARY     | INT    |           |
# | FROM_DATE  | DATE   |           |
# | TO_DATE    | DATE   |           |
# | YEAR       | INT    | PRIMARY   |
# | LOAD_DATE  | DATE   | SUB       |
# + ------------------------------- +
# Storage Format: ORC


# Inserting data into the Target table
hive_ctx.sql("INSERT OVERWRITE TABLE EMPLOYEES.EMPLOYEE_DIM PARTITION (year, Load_date) \
            SELECT EMP_NO, BIRTH_DATE, FIRST_NAME, LAST_NAME, GENDER, HIRE_DATE, \
            SALARY, FROM_DATE, TO_DATE, year, Load_date FROM EMP_TEMP")

As we have the necessary configuration mentioned in our code, we will simply call to run this job

spark-submit mysql_to_hive_etl.py

As soon as the job is run, our targeted table will consist 2844047 rows just as expected and this is how the partitions will appear:

screen-shot-2015-09-29-at-12-42-37-am

2

3

screen-shot-2015-09-29-at-12-46-55-am

The best part is that – the entire process gets over within 2-3 mins..

For more such interesting blogs and updates, follow us at DexLab Analytics. We are a premium Big Data Hadoop institute in Gurgaon catering to the needs of aspiring candidates. Opt for our comprehensive Hadoop certification in Delhi and crack such codes in a jiffy!

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

3 Stages of a Reliable Data Science Solution to Attack Business Problems

Today, businesses are in a rat race to derive relevant intuition and make best use of their data. Several notable organizations are skimming with cutting edge data science terms and resolving intricate problems (some being more successful than others).

 

3 Stages of a Reliable Data Science Solution to Attack Business Problems

 

However, the crux lies in determining the present stage of data science your organization has embraced, followed by ascertainment of the desired level of data science.

Continue reading “3 Stages of a Reliable Data Science Solution to Attack Business Problems”

Quantum Internet Is Now Turning Into a Reality

Quantum Internet Is Now Turning Into a Reality
 

Scientists across the globe are looking forward towards formulating new methods to realize ‘quantum internet’, an unhackable internet, which connects particles linked together by the principle of quantum entanglement. In simple terms, quantum internet will entail multiple particles striking information at each other in the form of quantum signals – but specialists are yet to figure out what it actually does beyond that. The term ‘quantum internet’ is quite sketchy at this moment. There’s no real definition of it as of now.

Continue reading “Quantum Internet Is Now Turning Into a Reality”

Call us to know more