Big Data Archives - Page 9 of 17 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

Big Data Analytics and its Impact on Manufacturing Sector

Big Data Analytics and its Impact on Manufacturing Sector

It is no new news that the Big Data and software analytics have had a huge impact on the modern industries. There are several industry disruptors that have surfaced in the past few years and totally changed the lives of all connected humans. Like Google, Tesla and Uber! These are the companies that have used the long list of benefits presented to us by Big Data to expand and infiltrate newer markets, they have helped themselves improve customer relations and enhance their supply chains in multiple segments of market.

As per the latest IDC Research projects the sale of Big Data and analytics services will rise to USD 187 billion in 2019. This will be a huge leap from the USD 122 billion which was recorded in 2015. A major industry that stands to benefit greatly from this expansion which is the manufacturing industry, with the industry revenue projections ranging to USD 39 billion by 2019.

The industry of manufacturing has come a long way from the age of craft industries. But back then, the manufacturing process involved a slow and tedious production processes which only yielded limited amounts of products.

The effects of Big Data Analytics on the Manufacturing sector:

 Automated processes along with mechanization have resulted in a generation of large piles of data, which is, much more than what most manufacturing enterprises know what to do with them.

But such data can yield beneficial insights for the manufacturing units to improve their operations and increase their productivity. Here are a few notable ones:

 

The effects of Big Data Analytics on the Manufacturing sector:

Image Source: mckinsey.com

Savings in cost:

Big data analytics can really help transform the manufacturing process and revolutionize the way they are carried out. The obtained information can be used to reduce the cost of production and packaging during manufacturing. Moreover, companies which implement data analytics can also reduce the cost of transport, packaging along with warehousing. This is in turn can help inventory costs and return i huge savings.

Improvement in safety and quality:

A lot of manufacturing companies are now making use of computerised sensors during the production to sift through low quality products while on the assembly line. With the right software analytics enterprises can use the data generated from such sensors to improve the quality and safety of the products instead of simply throwing away the low quality products after the production.

Improvement in safety and quality:

Image Source: blogs-images.forbes.com

Tightening up the workforce efficiency:

They can also use this data to improve management and employee efficiency. Big data analytics can be used to study the error rates on the production floor and use that information to analyse specific regions where employees are good when they perform under pressure.

Moreover, data analytics may help to speed up the production process n the production floor. S will be especially useful for large firms, which work with large volumes of data.

Better collaboration:

A great advantage of having an IT based data collection and analysis infrastructure is improved information movement within the manufacturing organization. The synergy of flow of information within the management and engineering departments as well as in the quality control sector and between the machine operators and other departments of the company helps them work more efficiently.

The manufacturing industry is much more complex than any other industry, which have implemented the big data analytics. Companies must effectively time the implementation of this software so that there are no losses. And should also pay attention as to from where they can mine the data and the right analytics tools to use for producing feasible and actionable results.

 

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Governance is Planning To Drive Compliance With GDPR

Governance is Planning To Drive Compliance With GDPR

The companies’ data governance program is usually linked to the implementation of the General Data Regulation Program. And throughout time several articles have been written about to link the two initiatives but till none was so clearly distinct as the recent one on LinkedIn by Dennis Slattery. He made an analogy of a wedding between Governance and Privacy, which is very fitting but also highlights the fact that, a long term marriage with optimum success is based on the foundations that strengthen it with mutual efforts.

We can also take a similar message from the famous quote by Henry Ford – coming together is just the beginning, keeping together is actual progress, and working together is success.

Data analytics should tie its hands with privacy policies for a successful approach towards good business.

So, how can we make this marriage successful?

The GDPR regulation is quite clear on what it states, about things that must be done in order to protect the Data Citizen’s Rights. However, the bigger question most companies are facing is how to comply with regulations and/or go beyond the bare minimum and let GDPR work for them.

Majority of such discussions around the topic of how to implement GDPR today are focussed on one of two approaches – either top down or bottoms up. But we would argue otherwise, as these two approaches are not mutually exclusive and that a successful implementation of the GDPR must be based on a combination of these complementary approaches.

For the top down approach, the team for GDPR will reach out to the businesses to get a clear understanding of all business (data) processes, which involve either one or another. And for each of these processes like for third party credit checks, data analytics, address verification, and much more there are several attributes which must be clarified. Like for instance:

  1. Have they acquired consent for the particular process?
  2. What is the business purpose for the collection?
  3. Who is the controller?
  4. Who is the processor?
  5. Who is responsible as the Data protection officer?
  6. What is the period for retention of data?
  7. What type of data is collected?
  8. Along with several other information

However, it must be noted that this is not a one-time effort, once all the processes related to the personal data have been identified and classified they will still be needed to be maintained as the organization grows and evolves with development in its infrastructure over time.

The bottom up approach is a little more technical in nature. The businesses that have already established metadata management tools can then use these technologies to identify personally the identifiable information (PII) and then try and classify these data elements and assign the relevant attributes for GDPR. This approach shall quickly hit a bottleneck as the same data can be utilized for several business purposes and thus, cannot be classified for GDPR.

With successful implementation of the GDPR we will be able to marry both the approaches well.

Big Data Hadoop training from DexLab Analytics from Dexlab Analytics

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

How Predictive Analysis Works With Data Mining

We know that you have probably heard many times that predictive analysis will further optimize and accentuate your marketing campaigns. But it is hard to envision that in more concrete terms what it will achieve. This makes it harder to choose and direct analytics technology.

 

How Predictive Analysis Works With Data Mining

 

Wondering how you can get a functional value for marketing, sales and product directions without being an expert? The solution to all your problems lies in how predictive analytics may offer with benefits for the current marketing operations. But to use it you must learn a few specifics about how it works.

Continue reading “How Predictive Analysis Works With Data Mining”

Why Businesses Must Adapt to AI To Thrive in The Market?

Why Businesses Must Adapt to AI To Thrive in The Market?

It is a fact that Artificial Intelligence is no longer just a sci-fi hype anymore, but is in fact a major reality. The approached based on Artificial Intelligence like Natural Language Processing (NLP), Machine Learning (ML) and Deep Learning are slowly emerging to be highly realistic technologies within the industry.

Today we have a very efficient NLP engine system, which is as powerful as ML and deep learning algorithms available. In a recent article, published on WIRED we read about the perpetual death of code (i.e. programs and programming) and how we will soon be training in systems, just as the way we train our pets!

2

Machine Learning is the same as learning from examples and experiences just like in real life. It is all about digesting huge volumes of data. We see great new developments within the industry such as IBM and Memorial Sloan Kettering are training Watson in things like Oncology by making use of massive amounts of patient medical records throughout the world. Watson learns from knowing how doctors are treating patients with cancer around the globe, just as how a medical student learns but only on a much larger scale.

Another great example of machine learning is from Japan. The farmers here are cultivating crispy fresh cucumbers with several prickles on them. The straight and thick cucumbers with a vibrant colour and lots of prickles are known to be of premium grade quality. Each cucumber has a different colour, quality, shape and freshness. They are sorted into nine different classes based on their size, shape, texture, colour, the amount of small scratches and whether or not they are crooked, along with the most important part of the amount of prickles on them. However, there is not well-defined instruction set for the classification of cucumbers in Japan.

AI Trends

Image Source: magisteradvisors.com

A farmer and agricultural scientist Makoto Koike has been studying this problem for several years now, and has been helping his farmer parents sort out cucumbers. But now with the use of Google’s TesorFlow based machine learning algorithm, he has been able to develop a system that learns from the precise way his parents have been sorting cucumbers in their farm. For achieving this, he had trained his system by using 7000 images of cucumbers that have been sorted by his mother, and at present the system classifies cucumbers with a much better rate of success and that too at a rapid speed.

Companies like Capgemeni have been making use of the technology of IBM’s Watson to improve efficiency and effectiveness in the resource supply chain.

Image Source: vceestartups.com

Image Source: vceestartups.com

It is predicted that the AI wave will definitely take the industry by storm and have a profound impact on almost all business and transform the present technology climate.

Moreover, we need to quickly turn our businesses into an AI-based approach along with implementation of Machine Learning, which will be supported by NLP and OCR (optical character recognition), speech recognition, and image recognition.

There are three trends in favour of the present technology service providers and their team of workers:

  1. The global expense on technology is increasing. So, technology enterprises will increase their size and market share by adapting to these new ways of working.
  2. The present availability of AI technology across the world is less than the amount that the world needs. So, the companies and individuals must pick up the pace to quickly expand their AI capabilities, and only then they will shine in the market. As for those interested in AI this is the best time to advance in their skills to become market leaders.
  3. The industry transformation has resulted in the marginalization of the CIO role in business and the expense into technology services by business buyers. This gives an edge to the business-oriented teams in play.

Image Source: cbi-blog.s3.amazonaws.com

Image Source: cbi-blog.s3.amazonaws.com

But reacting to this new demand for technology also needs AI and will bring newer challenges on board. The first being, change can only happen when the stakeholders of the company believe in the same. But sadly, many employees and managers do not believe in the capabilities of AI until they experience it on their own. It is for those who believe and develop their required skills and embrace the impending digital evolution that is destined to flourish.

However, secondly companies must address the problem of how to deal with the possible cannibalization of the existing revenues in order to adopt these new technologies. And finally, the lack of skill in the world of technology will make it even harder to build and expand AI capabilities.

Nevertheless, due to an industry boom, over the past 20 years a large percentage of the existing staff has skills that are almost obsolete and will not have new ones. Thus, this will bring an interesting future journey for the tech industry.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

What Does The Market Look Like for Hadoop in 2018 – 2022?

What Does The Market Look Like for Hadoop in 2018 – 2022?

It will be a simple understatement to say that Hadoop took the Big Data market up by storm this past years from 2012-2016. This time-period in the history of data witnessed a wave of mergers, acquisitions and high valuation rounds of finances. It will not be a simple exaggeration to state that today Hadoop is the only cost sensible and scalable open-source alternative option against the other commercially available Big Data Management tools and packages.

Recently it has not only emerged as the de-facto for all industry standard business intelligence (BI), and has become an integral part of almost all commercially available Big Data solutions.

Until 2015, it had become quite clear that Hadoop did fail to deliver in terms of revenues. From 2012 to 2015, the growth and development of Hadoop systems have been financed by venture capitalists mostly. It also made some funds through acquisition money and R&D project budgets.

But it is no doubt that Hadoop talent is sparse and also does not come in cheap. Hadoop smarts a steep learning curve that most cannot manage to climb. Yet, still more and more enterprises are finding themselves be attracted towards the gravitational pull of this massive open-source system, of Hadoop. It is mostly due to the functionality that it offers. Several interesting trends have emerged in the Hadoop market within the last 2 years like:

  • The transformation from batch processing to online processing
  • The emergence of MapReduce alternatives like Spark, DataTorrent and Storm
  • Increasing dissatisfaction among the people with the gap between SQL-on-Hadoop and the present provisions
  • Hadoop’s case will further see a spur with the emergence of IoT
  • In-house development and deployment of Hadoop
  • Niche enterprises are focussing on enhancing Hadoop features and its functionality like visualization features, governance, ease of use, and its way to ease up to the market.

While still having a few obvious setbacks, it is of no doubt that, Hadoop is here to stay for the long haul. Moreover, there is rapid growth to be expected in the near future.

Hadoop+the+Next+Big+Thing+in+India_2

Image Source: aws.amazon.com

As per market, forecasts the Hadoop market is expected to grow at CAGR (compounded annual growth rate) of 58% thereby surpassing USD 16 billion by 2020.

The major players in the Hadoop industry are as follows: Teradata Corporation, Rainstor, Cloudera, Inc. and Hortonworks Inc., Fujitsu Ltd., Hitachi Data Systems, Datameer, Inc., Cisco Systems, Inc., Hewlett-Packard, Zettaset, Inc., IBM, Dell, Inc., Amazon Web Services, Datastax, Inc., MapR Technologies, Inc., etc.

Several opportunities are emerging for Hadoop market with the changing global environment where Big Data is affecting the IT businesses in the following two ways:

  1. The need to accommodate this exponentially increasing amount of data (storage, analysis, processing)
  2. Increasingly cost-prohibitive models for pricing that are being imposed by the established IT vendors

010516Yelamaneni1

Image Source: tdwi.org

The forecast for Hadoop market for the years 2017-2022 can be summarised as follows:

  1. Hadoop market segment as per geographical factors: EMEA, America and Asia/Pacific
  2. As per software and hardware services: commercially supported software for Hadoop, Hadoop appliances and hardware, Hadoop services (integration, consulting, middleware, and support), outsourcing and training
  3. By verticals
  4. By tiers of data (quantity of data managed by organizations)
  5. As per application: advanced/predictive analysis, ETL/data integration, Data mining/visualization. Social media and click stream analysis. Data warehouse offloading; IoT (internet of things) and mobile devices. Active archives along with cyber security log analysis.

010516Yelamaneni2

Image Source: tdwi.org

This chain link graph shows that each component in an industry is closely linked to data analytics and management and plays an equally important role in generating business opportunities and better revenue streams.

Enjoy 10% Discount, As DexLab Analytics Launches #BigDataIngestion
DexLab Analytics Presents #BigDataIngestion

Contact Us Through Our Various Social Media Channels Or Mail To Know More About Availing This Offer!

 

THIS OFFER IS FOR COLLEGE STUDENTS ONLY!

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Black Money in India Can be Traced With Ease by Applying Big Data Analytics

The economy took a hit with the recent demonetization of the INR 500 and 1000 currency notes. The jury of economists around the world are still debating whether the move was good or not, but it has definitely caused a huge inconvenience for the public. Moreover, exchanging such a large amount of old currency notes is nothing shy of a mammoth Herculean task, as almost 85 percent of the economy is in the form of high denomination currency.

Black Money in India Can be Traced With Ease by Applying Big Data Analytics
                Black Money in India Can be Traced With Ease by Applying Big Data Analytics

 

These measures have been taken by the government to curb the flow of Black Money in India and get rid of corruption from its roots. While there is still a mixed reaction from the common people about this move about it being good or bad, technological experts have a different viewpoint about preventing the flow of Black Money in the country.  They say that with use modern technologies like Big Data Analytics it will be possible to trace Black Money painlessly and with much ease.

Continue reading “Black Money in India Can be Traced With Ease by Applying Big Data Analytics”

How To Stop Big Data Projects From Failing?

Here in this post we will discuss with inspiration from the views of insider experts about how Big Data teams and IT personnel can make sense from the right kinds of data which will ultimately allow executives to make smarter business choices and drive results for their business.

 

Big data hadoop certification in pune

 
The amount of data that has been created in the last two years is much more than the amount that has been created in the entire previous history of our human kind. This has led to an explosion of data analyst training institutes popping up every now and then and welcoming students from diverse backgrounds. Continue reading “How To Stop Big Data Projects From Failing?”

You Must Know These 7 Data Analytics Job Titles

You Must Know These 7 Data Analytics Job Titles

These days leveraging data be it big or small has become a powerful tool for all enterprises. IT firms are successfully transitioning to digital businesses and opportunities within the companies themselves are increasing to fulfil the growing demands.

So, if you want to join this megatrend in the job market, read on to find out the most in-demand data analytics job titles for today’s professionals:

Data scientist:

This job title has been getting a lot of attention since the past few years now. So much so, that even Glassdoor named it as the best career choice for optimum work/life balance. Their salaries are also comparatively higher.

But the field is still cloudy in terms of the job functions. So, let us understand what it actually means to be a data scientist.

According to Burch Works data scientists are people who “apply sophisticated quantitative measures and computer skills to both structure and analyze the massive amount of unstructured data sets or stream data continuously with an intention to derive information and prescribe action.

The executive recruiting firm says that the coding skills of these professionals are the main distinguishing factor that separates them from other predictive analytics professionals and allows them to exploit data regardless of its size, source and format.

These data professionals often have a master’s degree or a PhD in quantitative disciplines, such as applied math or statistics. They have expert skills and knowledge in statistical and machine learning methods and know tools like SAS, R etc. they are also proficient in other Big Data software like Hadoop and Spark.

2

Advanced analytics professional:

The professionals with this job role perform predictive analysis, prescriptive analysis, simulations, and all other forms of advanced analytics. Their role is however, significantly different from data scientists as they do not work with very large data sets and also not with unstructured data.

Data analyst:

A gamut of responsibilities fall under the job listings of a data analyst. They include ensuring data quality and governance, building different systems that enable businesses to gain user insights, performing actual data analysis and much more. However, the skill sets are similar and typically these professionals fit into the same category as advanced analytics professionals and data scientists, because they all can analyze data. But despite such similarities data analysts may be considered as more junior-level employees who are still in a way generalists and can fit into several different job roles within the organization.

Data engineers:

These are the wizards who work behind the scenes to make the jobs of data analysts and data scientists easier. They are technical professionals who have a deep understanding of Hadoop and other Big Data technologies like MapReduce, Hive, SQL and Pig, NoSQL technologies and other data warehousing systems.

Their primary job role is to construct the plumbing, build the data pipelines that clean, collect and aggregate data, organize it from different sources and then load them in data warehouses and databases.

Note that data engineers do not analyze data, but in other words keep the data flowing for processing so that other professionals can analyze them.

Business Analyst:

Business analysts can perform all the tasks that are almost the same for those who perform data analysis. However, business analysts generally have specialized knowledge of their specific business domain and then they apply that knowledge and analysis specifically for the business operations. For example, they may use their analytical skills to recommend improvement suggestions for the business.

Database Administrator:

These professionals are responsible for all things relevant to the operations, monitoring, and maintenance of the databases, often SQL or other relational database management systems also form their jurisdiction. Their tasks include installation, configuration, schemas definition, user training, and maintaining documents.

The database vendors like IBM, Oracle, Microsoft and others often offer certifications specific to their own proprietary technologies for such pros.

Business Intelligence professional:

BI professionals are responsible for adapting themselves with OLAP tools, reports and other data dashboards for looking at historical trends within data sets. Business Intelligence can have data visualization, and also include popular business intelligence platforms like Qlik, Tableau and Microsoft Power BI.

These were the most in-demand job titles in the data analysis industry, to help turn your career into the right direction take a look at our Big Data courses and have a job that you would thoroughly enjoy.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

In Justice Numbers Speak Louder Than Words!

In Indian prisons two thirds of the prisoners are under-trials!

 

 

This Monday, the “Prison Statistics India 2015 report” was released by the National Crime Records Bureau (NCRB). And here are the five surprising things that we gathered from the data about the condition of prisons in India.  Continue reading “In Justice Numbers Speak Louder Than Words!”

Call us to know more