Advanced Analytics and Data Science Archives - Page 5 of 6 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

3 Ways to Increase ROI with Data Science

3 Ways to Increase ROI with Data Science

In 2018, companies have decided to invest $3.7 trillion on machine learning and digital transformation so as to embrace a promising return on that sizeable investment for professionals involved in managerial roles. Nevertheless, 31% of the companies using the potent tools of machine learning and data science are not yet tracking their ROI or are in no mood to do so in the near future.

But to be on the side, ROI is very crucial for any business success – if you fail to see the ROI you expect from data science implementation, look into bigger and complex processes at work – and adjust likewise.

2

Take cues from these 3 ways, explained below:

Implementing data science strategy into C-Suite

According to Gartner, by next year 90% of big companies would hire a Chief Data Officer, a promising role that was almost nonexistent a few years ago. Of late, the term C-Suite is gaining a lot of importance – but what does it mean? C-Suite basically gets its name from a series of titles of top level executives who job profile name starts with the letter C, like Chief Executive Officer, Chief Financial Officer, Chief Operating Officer and Chief Information Officer. The recent addition of CDO to the C-Suite has been channelized to develop a holistic strategy towards managing data and unveil new trends and opportunities that the company has been attempted to tab for years.

The core responsibility of a CDO is to address a proper data management strategy and then decode it into simple, implementable steps for business operations. Its prime time to integrate data science into bigger processes of business, and soon company heads are realizing this fact and working towards it.

Your time and resources are valuable, don’t waste them

Before formulating any strategy, CDOs need to ensure the pool of professionals working with data have proper access to the desired data tools and support or not. One common problem that persists is that the data science work that takes place within an organization is done on silo, and therefore remains lost or underutilized. This needs to be worked out.

Also, besides giving special attention on transparency, data science software platforms are working towards standardizing data scientists’ efforts by limiting their resources for a given project, thereby ensuing cost savings. In this era of digitization, once you start managing your data science teams efficiently, half the battle is won then and there.

Stay committed to success

Implementing a sophisticated data science model into production process can be a challenging, lengthy and expensive process. Any kind of big, complicated project will take years to get completed but once they do, you expect to see the ROI you desire from data science but the journey might not be all doodle. It will have its own ups and downs, but if you stay committed and deploy the right tools of technology, better outcome is meant to happen.

In a nutshell, boosting of ROI is crucial for business success but the best way to trigger it would be by getting a bird’s eye view of your data science strategy, which will help in predicting success accurately and thus help taking ROI-supported decisions.

If you are looking for a good data analyst training institute in Delhi NCR, end your search with DexLab Analytics. Their data analyst certification is student-friendly and right on the point.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

4 Ways in Which Data Scientists Can Add Value to an Enterprise

 
4 Ways in Which Data Scientists Can Add Value to an Enterprise

Data is everywhere. There is no shortage of data – even the neophyte entrepreneurs who have just begun their business operations are sitting on mounds and mounds of data – but this often makes us introspect how can we use data to grow bigger, more productive?

Continue reading “4 Ways in Which Data Scientists Can Add Value to an Enterprise”

5 Habits of Highly Successful Data Scientists

5 Habits of Highly Successful Data Scientists

Suppose, you have two resumes of two data scientists in your hands: A and B. Both of them possess similar backgrounds and expertise: qualifications, platforms, languages, frameworks, methodologies, industries and more. Theoretically, they are more like the same person – on paper. Yet there are few things that reflect that A is more successful than B – but how you determine that?

Here we’ve whittled down a set of habits or traits of successful data scientists that make them stand out from the rest of the pack.

Continue reading “5 Habits of Highly Successful Data Scientists”

Here’s Why Indian Techies Need to Imbibe Rich AI and Data Science Skills to Ride High This 2018

Here’s Why Indian Techies Need to Imbibe Rich AI and Data Science Skills to Ride High This 2018

Amid growing anxiety over machines replacing human intelligence, Indian IT sector is seeking out expert skills in new technologies, involving big data, artificial intelligence and machine learning. There exists a high demand for skills in such newer streams of technology, which now forms the backbone of businesses. It’s not like these jobs appeared out of thin air; after being labeled as “niche skills” for several years, they are now making their way into the mainstream industry. 

This year, this trend is going to gain more momentum. It is expected to create 180000 to 200000 new jobs in 2018, mostly related to these new technologies – Alka Dhingra, the general manager of IT staffing at TeamLease Services, stated. It is equally applicable for both large service organizations as well as budding startups.

2

The Hot-List:

Here’re the notable areas, where job creation will hit in 2018:

Artificial Intelligence

Almost all Indian IT bigwigs are going gaga over AI. TCS, Infosys, Flipkart – nearly all native companies have started delving deeper into data to scale up their business operations and secure success in the future.

Though the world is being ruled by MACHINES, at the same time it’s HUMANS who train machines the way they function to perform human-like tasks. For that reason, the country’s IT unicorn, Tata Consultancy Services has trained more than 200000 employees about IoT and AI. Also, last month, India’s e-commerce giant, Flipkart launched an AI-inspired initiative known as AI for India, through which it has planned to leverage all the data it has gathered over the last few years to frame robust AI-driven solutions that will boost their operational activities further. Millions of dollars are being invested in this program – a company representative shared.

All this is going to need professionals skilled in the domains of deep learning, natural language processing and machine learning – look up to DexLab Analytics for data science online courses.

Data Science

For several years, native internet companies have been accumulating massive consumer data, which they now plan to mine it to their best interests. Just like Flipkart’s AI for India initiative, food-delivery-tech startup Swiggy is also working hard on its consumer data so that it can start making deliveries even more efficient and faster.

Some HR experts say that pharmacy analytics – an amalgamation of healthcare and analytics will also generate several new jobs for data scientists this new year– at present, machine learning, data analytics and data scientists’ jobs are the most searched jobs on all leading job portals in India.

Blockchain Technology

While bitcoin and cryptocurrency takes the world by storm, top-notch market specialists predict this advanced field of technology is going to create an exploding number of jobs. Cryptocurrency has already started drawing in a large pool of Indian investors, and legal experts are now asking for regulations.

“There could be regulations (for bitcoin) coming, and hence somebody who knows the subject is going to be in demand,” Aditya Narayan Mishra, CEO of CIEL HR Services, said.

Digital Marketing

Digital technologies are now omnipotent. All startups and matured companies across every domain are adopting suave digital solutions for various functions, like HR, manufacturing, operations, warehousing and communications. In the same manner, marketing too is not limited to its erstwhile conventional mediums; digital marketing is the new talk of the town.

“With more companies in India wanting to increase their digital presence, there is a visible surge in job searches for digital marketing jobs,” Sashi Kumar, the managing director of jobs portal Indeed India, said.

To learn more about how machine learning and artificial intelligence can help transform your business, enroll in a machine learning training course. DexLab Analytics’ Machine Learning Using Python course is superb; it helps students grasp the concepts better.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Data Science Jobs: Luxury Today, Necessity Tomorrow

Data Science Jobs: Luxury Today, Necessity Tomorrow

A general consensus: the scene of employment is changing. The jobs in data science are spiking up, and at a robust rate. According to World Economic Forum in 2016, a nuanced state of affairs with employment fluctuations is likely to happen across sectors, jobs and geography in the coming years – hold your horses and wait with bated breath!

2

Job Opportunities till 2020

A wide set of factors are expected to bring upon different effects on the varying segments of employment market till 2020. For an instance, recent demographic stats in the emerging job market are likely to ace up employment by 5% approx worldwide. On the other side, the surging geopolitical instability across the globe could reduce employment by 2.7%. Amidst this, artificial intelligence, touted as a replacement key for manpower is likely to have a minute effect on job reduction by a mere 1.5%.

Considerably, the overall figure points that the computing and mathematical jobs are going to increase by 3.2% – because a sturdy compilation of technological and geopolitical instability effect is expected to generate an altogether positive effect across various employment chains, suggesting the instability will in return result in a higher demand for programming, computing and modeling.

However, recruitment procedure is going to get more challenging.

Across every sector and every job family the perception is that recruitment will be more challenging in future #ai #sasacademic

Lower University application rates

Following the latest trends, the applications to universities by students have taken a halt – in UK, the number of people applying to universities has fallen drastically – the reason anticipated is the result of Brexit.

But irrespective of any reason, lower application rate is going to affect graduate recruitment. The emergence of a gig economy is largely considered a positive effort, but a lack of benefits like annual leave may cause some hindrance in the effectuality. Also, AI is resulting in a less number of job generation, the automation of entry-level jobs mean lesser jobs.

Hone your skills further after employment

While undergraduates and postgraduates eyes employment as the end of their education, for employers it’s an entirely different ball game. For them, employment is the just a stepping stone in the process of ongoing training to make sure the fresh workforce develops cutting-edge skills. This stands true especially in complex job areas of data science, where a shortage of graduates exists. As a result, motivate your existing workforce to develop required data analytics skills in the most accomplishing way to garner expertise and thorough know-how.

The most desirable quality in a new #DataScience hire is their dedication to continually learn more. #sasacademic #ai

To get the best kind of data science online training, drop by DexLab Analytics Delhi – it is a prime learning platform in India that helps you remain up-to-date with the latest tools and trends. The field of data analytics is evolving rapidly and continuing professional development is the need of the hour.

 
Source blogs.sas.com
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Digital Transformation: Data Scientists Are a Must Now for Enterprises

Data explosion, sprawling around Facebook and Internet of Things need to be nipped now to make sense what’s in there. Data is filled with promises, it offers new significant insights culled from the patterns in the data to just not report what happened but predict future scenarios.

Digital Transformation: Data Scientists Are a Must Now for Enterprises

This has led organizations to hire data scientists who are adept with the expertise and experience to shed some light on the mysteries of NoSQL data lakes and data bases, in which data is hoarded. For best SAS analytics training in Gurgaon, look up to DexLab Analytics – their SAS certification in Delhi is nifty and student-friendly.

Continue reading “Digital Transformation: Data Scientists Are a Must Now for Enterprises”

Why Data Science Matters More Than Data Scientists?

More is always better, isn’t it? But does it always holds true, especially when it comes to customer data? Maybe not, because business is all about extracting meaningful insights from data, and if that cannot be acted upon then it is of no good.

 
Why Data Science Matters More Than Data Scientists?
 

Recently, Accenture concluded that one of the greatest challenges that marketers face nowadays is to discover the right ways to turn data into productive insights and then into action. For that, you would need analytics professionals who do know how to collect, store and integrate information, while mastering the technology aspect.

Continue reading “Why Data Science Matters More Than Data Scientists?”

Data Science and Machine Learning: In What State They Are To Be Found?

Keen to have a sweeping view of data science and machine learning as a whole? 

Want to crack who is playing tricks with data and what’s happening in and around the budding field of machine learning across industries?

Looking for ways to know how aspiring, young data scientists are breaking into the IT field to invent something new each day?

Hold your breath, tight. The below report showcases few of our intrinsic findings – which we derived from Kaggle’s industry-wide survey. Also, interactive visualizations are on the offer.

  1. On an average, data scientists fall under the age bar of 30 years old, but as a matter of fact, this age limit is subject to change. For example, the average age of data scientists from India tends to be 9 years younger than the average scientists from Australia.
  2. Python is the most commonly used language programs in India, but data scientists at large are relying on R now.
  3. Most of the data scientists are likely to possess a Master’s degree, however those who bags a salary of more than $150K mostly have a doctoral degree under their hood.

Who’s Using Data?

A lot of ways are there to nab who’s working with data, but in here we will fix our gaze on the demographic statistics and the background of people who are working in data science.

What is your age?

To kick start our discussion, according to the Kaggle survey, the average age of respondents was 30 years old subject to some variation. The respondents from India were on an average 9 years younger than those from Australia.

What is your employment situation?

What kind of job title you bag?

Anyone who uses code for data analysis is termed as a data scientist. But how true is this? In the vast realm of data science, there are a series of job titles that can be pegged. For instance, in Iran and Malaysia, the job title of data scientist is not so popular, they like to call data scientists by the name Scientist or Researcher. So, keep a note of it.

How much is your full-time annual salary?

While “compensation and benefits” ranked a little lower than “opportunities for professional developments”, the best part remains it can still be considered a reasonable compensation.

Check out how much a standard machine learning engineer brings home to in the US

What should be the highest formal education?

So, what’s going on in your mind? Should you get your hands on the next formal degree? Normally, most of the data scientists have obtained a full-time master’s degree, even if they haven’t they are at least data analytics’ certified. But professionals who come under a higher salary slab are more likely to possess a doctoral degree.

What are the most commonly used data science methods at work?

Largely, logistic regression is used in all the work areas except the domain of Military and Security, because in here Neural Networks are being implemented extensively.

Which tool is used at work?

Python was once the most used data analytics tool, but now it is replaced by R.

The original article can be viewed in Kaggle.

Kaggle: A Brief Note

Kaggle is an iconic platform for data scientists, allowing ample scope to connect, understand, discover and explore data. For years, Kaggle has been a diverse platform to drag in hundreds of data scientists and machine learning enthusiasts, and is still in the game.

For excellent data science certification in Gurgaon, look no further than DexLab Analytics. Opt for their intensive data science and machine learning certification and unlock a string of impressive career milestones.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Bringing Back Science into “Data Science”

Bringing Back Science into “Data Science”

Far from the conventional science disciplines, like physics or mathematics, Data Science is a budding discipline: which means there are no proper definition to explain what data science is and what role it does play.

Nevertheless, the internet is full of working definitions of data science. As per Wikipedia, Data Science is

(an) interdisciplinary field about processes and systems to extract knowledge or insights from data in various forms, either structured or unstructured, which is a continuation of some of the data analysis fields such as statistics, data mining, and predictive analytics.

To that note, a very important aspect is left behind in this explanation: Data Science is a science first, which means a proper scientific method should be devised to tackle different data science practices. By scientific method, we mean a healthy process of asking questions, collecting information, framing hypothesis and analyzing the results to draw conclusions thereafter.

Go below, the process breakup is as follows..

Ask questions

Start by asking what is the business problem? How to leverage maximum gains? What ways to implement to increase return on investment? The finance industry takes help from data science for myriad reasons. One of the most striking reasons is to enhance the return on investment out of marketing campaigns.

What Sets Apart Data Science from Big Data and Data Analytics – @Dexlabanalytics.

Collect data

A predictive modeling analyst has access to vast data resources, which eventually makes the entire research and gathering data process much less complex. However, it is only in theory, because rarely data is stored in the desired format an analyst wants, making his job easier.

Data Science – then and now! – @Dexlabanalytics.

Devise a hypothesis

After getting to the heart and soul of the problem, we start to develop hypotheses. For example, you believe your firm’s profit is leveraged by an optimistic customer reaction towards your product quality and positive advertising capabilities of your firm. Through this example, we explained a nomological network, where you are in a position to infer casualties and correlations. While dealing in Data Science, assessing customer perception is very crucial, and so is the analysis of financial datasets.

Data Science: Is It the Right Answer? – @Dexlabanalytics.

Testing and experiments

Formulating a hypothesis is not enough; a predictive modeler relies on statistical modeling techniques to forecast the future in a probabilistic manner. Keep a note, this doesn’t result in indicating “X will occur”, instead it refers “Given Y, the probability of X occurring is 75%.”

Any proper experiment includes control groups and test, meaning a modeler when preparing a predictive model should divide the dataset so as to ensure availability of few data for testing predictive equation.

Now, if we talk about marketing – consider logistic regression. It offers a probability whether a binary event of interest will take place or not.

Enroll in an R Predictive Modelling Certification program to go through the mechanics of this problem. Reach us at DexLab Analytics.

Tracing Success in the New Age of Data Science – @Dexlabanalytics.

Evaluate results and infer conclusions

Now is the time to make a decision: do you prefer the quantitative approach? As social media is totally unstructured, the qualitative approach needs to be implemented using Natural Language Processing, which can be a tad difficult. Now, how about making a longitudinal analysis, while transforming data into time series? Do all these questions rake your mind? Yes? Then you are on the right track.

Keep Pace with Automation: Emerging Data Science Jobs in India – @Dexlabanalytics.

Reporting of results

This is the final battle scene for all predictive modelers. It calls for all the documents, based on which a modeler made his decision during the development process. All the assumptions taken have to be identified and highlighted beside the results.

And with it comes the end of our Science in Data Science process!

For more interesting updates and blogs, follow us at DexLab Analytics. Opt for our impressive Data Science Courses in gurgaon and lead the road of success!

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more