Advanced Analytics and Data Science Archives - Page 3 of 6 - DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA

A Beginner’s Guide to Learning Data Science Fundamentals

A Beginner’s Guide to Learning Data Science Fundamentals

I’m a data scientist by profession with an actuarial background.

I graduated with a degree in Criminology; it was during university that I fell in love with the power of statistics. A typical problem would involve estimating the likelihood of a house getting burgled on a street, if there has already been a burglary on that street. For the layman, this is part of predictive policing techniques used to tackle crime. More technically, “It involves a Non-Markovian counting process called the “Hawkes Process” which models for “self-exciting” events (like crimes, future stock price movements, or even popularity of political leaders, etc.)

Being able to predict the likelihood of future events (like crimes in this case) was the main thing which drew me to Statistics. On a philosophical level, it’s really a quest for “truth of things” unfettered by the inherent cognitive biases humans are born with (there are 25 I know of).

2

Arguably, Actuaries are the original Data Scientists, turning data in actionable insights since the 18th Century when Alexander Webster with Robert Wallace built a predictive model to calculate the average life expectancy of soldiers going to war using death records. And so, “Insurance” was born to provide cover to the widows and children of the deceased soldiers.

Of course, Alan Turing’s contribution cannot be ignored, which eventually afforded us with the computational power needed to carry out statistical testing on entire populations – thereby Machine Learning was born. To be fair, the history of Data Science is an entire blog of its own. More on that will come later.

The aim of this series of blogs is to initiate anyone daunted by the task of acquiring the very basics of Statistics and Mathematics used in Machine Learning. There are tonnes of online resources which will only list out the topics but will rarely explain why you need to learn them and to what extent. This series will attempt to address this problem adopting a “first principle” approach. Its best to refer back to this article a second time after gaining the very basics of each Topic discussed below:

We will be discussing:

  • Central Limit Theorem
  • Bayes Theorem
  • Probability Theory
  • Point Estimation – MLE’s
  • Confidence Intervals
  • P-values and Significance Test.

This list is by no means exhaustive of the statistical and mathematical concepts you will need in your career as a data scientist. Nevertheless, it provides a solid grounding going into more advanced topics.

Without further due, here goes:

Central Limit Theorem

Central Limit Theorem (CLT) is perhaps one of the most important results in all of Statistics. Essentially, it allows making large sample inference about the Population Mean (μ), as well as making large sample inference about population proportion (p).

So what does this really means?

Consider (X1, X2, X3……..Xn) samples, where n is a large number say, 100. Each sample will have its own respective sample Mean (x̅). This will give us “n” number of sample means. Central Limit Theorem now states:

                                                                                                &

Try to visualise the distribution “of the average of lots of averages”… Essentially, if we have a large number of averages that have been taken from a corresponding large number of samples; then Central Limit theorem allows us to find the distribution of those averages. The beauty of it is that we don’t have to know the parent distribution of the averages. They all tend to Normal… eventually!

Similarly if we were to add up independent and identically distributed (iid) samples, then their corresponding distribution will also tend to a Normal.

Very often in your work as a data scientist a lot of the unknown distributions will tend to Normal, now you can visualise how and more importantly why!

Stay tuned to DexLab Analytics for more articles discussing the topics listed above in depth. To deep dive into data science, I strongly recommend this Big Data Hadoop institute in Delhi NCR. DexLab offers big data courses developed by industry experts, helping you master in-demand skills and carve a successful career as a data scientist.

About the Author: Nish Lau Bakshi is a professional data scientist with an actuarial background and a passion to use the power of statistics to tackle various pressing, daily life problems.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Discover Top 5 Data Scientist Archetypes

Discover Top 5 Data Scientist Archetypes

Data science jobs are labelled as the hottest job of the 21st century. For the last few years, this job profile is indeed gaining accolades. And yes, that’s a good thing! Although much has been said about how to progress towards a successful career as a data scientist, little do we know about the types of data scientists you may come across in the industry! In this blog, we are going to explore the various kinds of data scientists or simply put – the data scientist archetypes found in every organization.

Generalist

This is the most common type of data scientists you find in every industry. The Generalist contains an exemplary mixture of skill and expertise in data modelling, technical engineering, data analysis and mechanics. These data scientists interact with researchers and experts in the team. They are the ones who climb up to the Tier-1 leadership teams, and we aren’t complaining!

Detective

He is the one who is prudent and puts enough emphasis on data analysis. This breed of data scientists knows how to play with the right data, incur insights and derive conclusions. The researchers say, with an absolute focus on analysis, a detective is familiar with numerous engineering and modelling techniques and methods.

Maker

The crop of data scientists who are obsessed with data engineering and architecture are known as the Makers. They know how to transform a petty idea into concrete machinery. The core attribute of a Maker is his knowledge in modelling and data mechanisms, and that’s what makes the project reach heights of success in relatively lesser time.

Enrol in one of the best data science courses in Gurgaon from DexLab Analytics.

Oracle

Having mastered the art and science of machine learning, the Oracle data scientist is rich in experience and full of expertise. Tackling the meat of the problem cracks the deal. Also called as data ninjas, these data scientists possess the right know how of how to deal with specific tools and techniques of analysis and solve crucial challenges. Elaborate experience in data modelling and engineering helps!

Unicorn

The one who runs the entire data science team and is the leader of the team is the Unicorn. A Unicorn data scientist is reckoned to be a data ninja or an expert in all aspects of data science domain and stays a toe ahead to nurture all the data science nuances and concepts. The term is basically a fusion version of all the archetypes mentioned above weaved together – the job responsibility of a data unicorn is impossible to suffice, but it’s a long road, peppered with various archetypes as a waypoint.

Organizations across the globe, including media, telecom, banking and financial institutions, market research companies, etc. are generating data of various types. These large volumes of data call for impeccable data analysis. For that, we have these data science experts – they are well-equipped with desirable data science skills and are in high demand throughout industry verticals.

Thinking of becoming a data ninja? Try data science courses in Delhi NCR: they are encompassing, on-point and industry-relevant.

 

The blog has been sourced from  ― www.analyticsindiamag.com/see-the-6-data-scientist-archetypes-you-will-find-in-every-organisation

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

CoCalc and Juno Help You Master Data Science on Mobile Phones, Here’s How!

CoCalc and Juno Help You Master Data Science on Mobile Phones, Here’s How!

Innovation has been at the heart of data science evolution. Cutting-edge technology advancements are found influencing data science training and learning mediums. Besides conventional channels, such as desktops and laptops, there’s now a new way to master machine learning coding systems, i.e. through mobile phones. A robust combination of tools is now at your service to help you code and monitor complex machine learning frameworks using mobile phones.

Take a look at these two tools; they are perfect tools for completing random machine learning tasks.

CoCalc

It is a pioneering web app that hosts coding environments amidst the cloud. It is a sophisticated online work domain that helps you perform mathematical calculations in the cloud. Later, you can share your projects even successfully.

CoCalc is primarily student-friendly software. It is crafted for students’ training modules and machine learning training programs. Thus, it comes loaded with a slew of potent data science packages, including Pandas, and all this makes it easier to develop Jupyter notebooks.

A lot of teachers are found using CoCalc to design courses. People can even chat using CoCalc, which further enhances collaboration on projects and improves the overall learning experience. What’s more, its customer service is also quite responsive. Their team of experts is always a step ahead to assist you.

2

Juno

The notable iPhone app helps user code in CoCalc on any mobile devices. In fact, Juno is specially designed for mobile and boasts of superb keyboard support. It tackles multi-screen multitasking challenges and provides support to Python code completion.

Quite interestingly, Juno is largely free for users. That makes it more suitable for mastering demographic. The experts have tried their best to make the free versions of Juno as interactive and fun as possible – engage with introductory notebooks available on Python, Matplotlib, Jupyter, SciPy and NumPy without shelling any extra penny. They not only keep things interesting but also feel good on the pocket.

However, if you want to savour the benefits of Juno Pro that connects you to an arbitrary Jupyter server, you have to make a one-time purchase and use it on all your devices.

Power of Combination

Surely, an effective combination of these two abovementioned tools comes as a soothing balm in the life of working professionals. They are the ones who need to be constantly on the go. Now, with these powerful tools at the tap of their fingers, they can work on myriad data science assignments while being at home or travelling.

However, as a downturn, coding on mobile is not as easy as it seems to be. Mobile devices are not highly configured to support rapid content creation. As a result, they take more time finishing an assignment as compared to laptops and desktops.

But, of course, if you are an adult learner, Juno and CoCalc are sure-fire ways to make progress along the bustling field of artificial intelligence and machine learning. In case, you want to learn more about AI, opt for an encompassing artificial intelligence certification in Delhi NCR.

 

The blog has been sourced from ― www.analyticsindiamag.com/learn-data-science-on-your-mobile-phone-with-these-tools

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

6 Essential Skills Data Scientists Need to Add to Their Resumes

6 Essential Skills Data Scientists Need to Add to Their Resumes

Like all other career paths, cracking the hottest job of 21st century is mainly about gaining knowledge and developing important skills relevant to the job. And your resume should reflect all these skills. So what must the resume of a professional data scientist look like? Here are 6 key skills that must be in the fingertips of a good data scientist.

Stats and Math:

Not only blue-chip tech companies, even medium and small scale enterprises are operated by data science these days. And statistical knowledge is vital for that. You should be thorough with general statistical concepts, like distributions, tests, range, likelihood estimators, etc.

In mathematics, one must know the basics of linear algebra and multivariable calculus. This will definitely make a difference in your work outcomes as it enables you to improve predictive presentations.

2

Excellent Programming and Computing Skills:

Simply put, being good at coding is a must. So, if you are a budding data scientist you must actively work towards developing a computing mind; you should be able to understand, write and even analyze code whenever necessary. This level of dexterity only comes through meticulous study and practice of not one, but a number of programming languages.

If you want to develop a programming skill which is especially designed for data scientists, then get enrolled for R programming certification. Over 40 percent data scientists prefer R for solving stat problems. But it must be noted that R isn’t easy to learn, especially for those who aren’t comfortable with codes.

Python is another language which is highly preferred by data scientists because it is very adaptable and hence, can be employed in all the different steps part of a data science project. Moreover, data sets can be created with ease and SQL tables can be imported into working codes when required. Considering these benefits and the fact that over 50% data scientists favor Python, an excellent Python Certification in Delhi should be first in your list of courses to undertake.

Live Projects

Learning isn’t effective unless you implement it practically. Moreover, your skills get duly appreciated when it’s demonstrated. Hence, always look for live projects you can join and try to understand the data architecture behind the screen. It may be up there in your head, but it needs to be implemented. Large companies actually prefer candidates who have more practical experience rather than just bookish knowledge.

Managing Unstructured Data

Unstructured data is any type of content that doesn’t fit into traditional database tables. These data types aren’t well organized and hence, sorting them becomes very difficult. Blogs, videos and customer reviews are some examples of unstructured data. Being able to manage unstructured data is an important skill for data scientists. Apache Hadoop, NoSQL and Microsoft HDI insight are some good software for tackling unstructured data. If you are interested to learn the techniques, you can look up the course details for Hadoop certification in Delhi at DexLab Analytics.

Storytelling with Data

Data scientists might have to work with complicated models and datasets, but they must know how to express their deductions in lucid language that’s simple and engaging. Hence their raw data must be expressed in the form of tables, charts and graphs, which are visually appealing and can capture the attention of stakeholders.

Academics and Degrees

A strong educational background is the door to the world of data science. Big companies prefer applicants who are master degree holders in either stats or math or computer science or physical science.

Data science is definitely the trendiest job and you might be eager to land one, but it’s not easy to acquire the above mentioned skills. If you are looking for guidance from experts who have previously worked in this field, then you should get enrolled for Data Science Courses in Delhi right away. The industry experts at DexLab Analytics tailor the courses to the unique needs of students and incorporate ample practical cases to help them get ready for the challenges ahead.

 

Reference: www.analyticsindiamag.com/7-things-data-scientists-must-have-in-their-resumes

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How to Build and Maintain Successful Data Science Teams?

How to Build and Maintain Successful Data Science Teams?

Businesses are becoming smarter. They are unleashing a bigger impact. Driven by innovation and humongous volumes of data, organizations observe market trends and predict customer behavioral patterns – no wonder, this industry is the right place to incubate newer technologies and explore higher horizons.

Data science is the bull’s eye of this new-age industry. It is unabashedly predictive rather than being conclusive. As a result, garnering cross-team collaborations in this particular field of science may turn a bit challenging. A good data science team is a combination of talented professionals, high intellect, powerful body of knowledge and advanced data-tackling skills.

To give you a hand, we’ve rounded up top trends or tips to follow to get to the bottom of the art of running successful data science teams:

2

Diversity is the Key

Diverse backgrounds, on-point technical expertise and voluminous domain knowledge is what makes a data science team high on diversity. A healthy concoction of machine learning skills, knowledge in mathematics and statistics and conversational skills is critical for a productive team. Just having one or two skills is simply not enough, anymore!

Structure and Prioritize

Once you have a team by your side, you need to start structuring an operating model. The data needs to be deconstructed into sizeable prioritized slices. After that, every data-related measure should be backed by needful communication – it helps in determining the bottlenecks and devise effective solutions.

Experimentation Helps

Experimentation is crucial as well as important. Unless you experiment, you can never scale new heights and this is equally applicable in data science. In the sprawling field of data science, every project starts with a challenge and a set of hypothesis that addresses it. However, you won’t find any particular roadmap to success. Hence, it opens a lot of room for innovation and experimentation.

Collective Responsibility

Yielding data science initiatives demand absolute cooperation, collaborative responsibilities and fine reporting structures. A healthy coordination between analytics and business teams, specifically IT, is extremely important for overall business success. Data science experts need to collaborate with each other and strike a tone of success.

Data Accuracy

Gain access to data bank and fine-tune the accuracy of your analysis. Business users leverage improved functional tools of analytics for overall business success. Data is the key, and data availability and quality are the pillars on which organizations stand. Therefore, we suggest practice data accuracy for improved data analytics and boost future business goals.

Today, online resources and libraries can help you almost everything. What they cannot do is feed you is the underlying intricacies of data science and how to devise an effective solution utilizing the base knowledge of mathematics, statistics and machine learning technology. For these, you need an expert Data Science Certification – it will help you discover the grey unknown territories of data and educate you on how to tame them.

Reach us at DexLab Analytics – we offer in-demand data science courses for students and professional, both.

 

The blog has been sourced fromwww.analyticsindiamag.com/the-art-of-running-successful-data-science-teams

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Students Select a Good Data Science Course?

How Students Select a Good Data Science Course

Data science and analytics are in hype. This time, we decided to know what students look for while arming themselves in this new age field of study. For that, we bring you Analytics India Magazine’s recent survey.

We are on an interesting endeavor to tap into the key areas that IT professionals and aspiring candidates look up to for lessening the learning gap. Ready to join us?

Disclaimer – the below opinions are from budding data scientists – from young IT employees to fresh graduates; we have compiled them and presented in a concise way. All thanks to AIM.

2

What key element to consider in a data science or analytics course?

For students, there are many preconceived notions about a course’s curriculum, faculty, brand name and even fellow batch mates. No wonder, it’s always tricky to focus only on a single key element.

Nevertheless, going by the survey, the respondents voted the most for course content, only to be seconded by hands-on experience. Yes, course content is the life and soul of data science and analytics training program. But, it’s not enough, it has to be supplemented by good hands-on experience and placement opportunities.

For more,

What should be the duration of the data science or analytics course?

Short-term or long-term? This is a very common question plaguing the minds of interested candidates –in the recent survey, more than 66% of respondents said they would choose short-term programme over long-term, and almost 55% said that they would prefer part-time skill-training programme than full-time.

What format would you chose for data science training courses?

Always, course curriculum should be in an easy to learn format. When the expert guys at AIM asked the respondents what kind of format do they prefer for their educational course, this is what they revealed:

  • 47% or more voted for a hybrid format of education
  • 28% said they prefer online learning method
  • Less than 25% of the candidates said they would like to stick to the old-school classroom method of teaching

What about Capstone Projects and Placements?

Capstone Projects are important. 92% of respondents vouched for that.

Another 57% said that placements are crucial too if you are thinking of making a mark in the competitive tech industry. Up-skilling is the key in today’s world.

When is the best time to opt for a data science course?

There’s nothing like the best time to enroll in a data science and analytics course. Anytime, you can start learning. However, the 43% of respondents believe that it’s better to take up business analyst training course right after graduation or post graduation.

On the other hand, 33% think that gaining some work experience prior to start training would be helpful.

For more such updates, watch this space.

If you are looking for a decent data analyst training institute in Gurgaon, DexLab Analytics fits the bill right. Drop by their site and gather information.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

5 Big Challenges That Data Scientists Face Each Day

5 Big Challenges That Data Scientists Face Each Day

Data is lucrative; the world is revolving around how we churn out data. As a result, there’s been a high demand for data scientists. But of course, as rightfully said there’s no gain without pain – the promising field of data science is laden with many challenges, which needs to be overcome by expert consultants under needful guidance and with deft expertise.

Below, we’ve mentioned top 5 data science challenges, and how to handle them well…

Address the Specifics

Successful data scientists don’t try to do everything on their own. Instead, they individually focus on a single specific area. “I would encourage new professionals to understand that data science is a bit like medicine—it’s a vast and vague term that encapsulates wildly different practices under one roof,” said Tal Kedar, CTO at Optimove. “Data scientists [can have] very different engineering skill sets [and be] experienced with very different platforms and tools.”

For data science certification, look no further. DexLab Analytics is a prime data science training institute catering to the needs of enthusiast students. 

2

Be Guided By Your Intuition

Being a data scientist not only exposes you to the question of ‘how’, but also ‘why’. No longer do you just sift through data to make connections, instead you have to use your comprehensive knowledge to develop ‘mental model’, which can be accepted or rejected by your data.

Cross-Department Expertise is Appreciable

“The best data scientists are not just statisticians or machine learning experts; they are also an authority in the field or business where they are applying those skills,” said Kedar. It’s no hard fact, data scientists are arguably the best bridge between technical and non-technical teams. Quite naturally, whichever career they chose next, their skills will be treated as an asset to the next company in question.

Seamless Flow of Communication

Communication amongst the data teams is crucial – data scientists need to explain technical concepts to audiences from other departments, including executives and stakeholders, who might not belong from technical backgrounds. “It can be exciting to share all of the technical complexities that got you to your conclusions,” said Andrew Seitz, senior data analyst at Snowflake. “But what your stakeholders need are the key findings and action items. Save the details for the appendix (or Q&A).”

Raw Data Play

The biggest challenge for data scientists is to find ways of using the data – how the process of data extraction, data cleaning, data analysis and data modeling are carried out. Data scientists need to possess broad domain expertise in all programming languages, such as Python, R and SQL.

The work life of a data scientist revolves around creating clean data sets loaded with useful information on which machine learning algorithms can be applied. This kind of job is mostly treated as an art instead of science, because a majority of hard work and effort goes unnoticed when observing the final product, just like an artist’s craft.

The scope and capability of data science is encompassing, so are the challenges. But, of course, most of the challenges can be mitigated with considerable preparation and communication. How? With an intensive Python data science course – from the expert consultants of DexLab Analytics.

 

The blog has been sourced fromwww.forbes.com/sites/laurencebradford/2018/09/06/8-real-challenges-data-scientists-face/#8adbc206d999

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

3 Most Used Data Science Tools in 2018

The humongous amount of data calls for advanced data science tools – to completely understand and analyze the information.

Data analytics fuels digital transformation. The best way to do this is by arming an expert pool of statisticians, math pundits and business analysts with suitable data science tools with which they can squelch out crucial insights from the ever-growing silos of corporate data. This kind of initiatives promote a data-driven business culture, which acts as a present prerequisite – and this why here we’ve jotted down top 3 data science tools that’s weaving wonders with the new oil of the world, data:

2

Python

Both, well-performing software and a powerful programming language perfect for developing custom algorithms, Python is the most must-have tool for all data scientists. In a recent KDnuggets survey of 2052 users, Python language was recommended by 65.6% of respondents.

“We use Python both for data science and back end, which provides us with rapid development and machine learning model deployment,” shared Alexander Osipenko, lead data scientist at Cindicator Inc. “It’s also of great importance for us to ensure the security of implemented tools.”

Leslie De Jesus, innovation director and lead data scientist at Wovenware emphasized on the importance of Python libraries. “[We use] Python Libraries, including Scrapy, for web scraping and being able to extract data from the internet and upload it into a data frame for analysis,” said De Jesus.

Few others vouched for Python because of its multifaceted nature and strong optimization skills.

For Python Certification Training in Delhi, drop by DexLab Analytics.

R

Quite similar to Python, R is the go-to programming language for many data scientists and they depend on it wholly because it’s simpler and more specifically-built for data science. According to the KDnuggets poll, 48.5% respondents voted it to be one of the leading data science tools.

As for all, R programming language is blessed with cultivated capabilities for machine learning and statistics, and professionals love using it. It’s another favorite of data analysts, especially those who deals with a lot of data exploration.

“I can quickly see summary stats like mean, median and quartiles; quickly create different graphs; and create test data sets, which can be easily shared and exported to CSV format,” said Jon Krohn, chief data scientist at Untapt Inc.

Seeking R language certification in Delhi? We have DexLab Analytics for you!

Tableau

Bridging the gap between skilled data science teams and more business-oriented analytics consultants, Tableau Software is the fastest data visualization and dashboard tool. “It is a fantastic tool for data scientists and noobs working on data science,” said Pooja Pandey, senior executive for SEO at Entersoft Security. “[It’s a] quick dashboarding tool to visualize insights and analytical data with a very short learning curve.”

The lightening speed of Tableau’s visualization and reporting functions is commendable. It’s easy to learn, quick to implement and intuitive to use. Moreover, it helps different segments of a company to customize exhaustive reports according to their requirements.

Now, if you are looking for ways to hone your visualization skills, we would recommend Tableau BI training courses from DexLab Analytics. Their training courses are comprehensive, well-research and as per industry standards.

 

The blog has been sourced fromsearchbusinessanalytics.techtarget.com/feature/Data-scientists-weigh-in-5-data-science-tools-to-consider

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

3 Potent IoT Challenges That Keeps Data Scientists Always on Toes

3 Potent IoT Challenges That Keeps Data Scientists Always on Toes

The job responsibility of data scientists is no mean feat. They stay under a lot of pressure. A wide number of stumbling blocks are laid in front of them, which makes it really difficult for them to secure the long-shot business goals and objectives.

As prevention is better than cure – being aware of the challenges always help data scientists plot the shortest and smartest route to success, and we can’t agree more. Brace yourselves! Below, we’ve enumerated some of the challenges data scientists face while getting started with an IoT project:

2

Inferior Data Quality

Messy data is life and soul of data scientists. Irrespective of business scale, the job of every data scientist is to organize data in the correct manner. But, however organizing them may require adequate time as well as hard work.

A fundamental rule – avoid manual data, wherever possible. Intelligent data compilation is the final key to high quality data, which is a prerequisite for favorable company operation. It includes crisp communication, regular anomaly detection, logic determination and well-defined industry standards. Another way to tame your data can be through application integration tools – they are a fabulous way to automate data entry and lessen escalation of typographical errors, individual eccentricities, staggering spellings and more from the data.

Once data is in the right format and quality, data scientists can start slicing off the data they don’t need any more, which takes us to the next step.

For Data Science Certification, drop by DexLab Analytics.

Shedding Out Excessive Data

Though big data is found in abundance, too much of data can also pose a substantial challenge. This is why employing superior data selection techniques and minimizing features are supported, they help eliminate unwanted chaos cutting through what matters the most.

What happens is that when data becomes excessively large, we often end up developing high-end predictive models that fails to deliver productive results. But, on the other hand, if you track the events, giving importance to validation and testing routines, the outcomes will spell perfection. And that’s what we are looking forward to.

Predictive Analytics is the Key

IoT has made predictive analytics a daunting reality. Owing to its critical business significance, predictive analytics is quickly accelerating along the priority ladder of IoT stakeholders. However, take a note, this breed of analytics may not be fruitful in every instance. It’s imperative to begin your analytics endeavor by clearly defining your module’s objective, followed by needed research and valuation.

Next, you need to sync in with subject matter pundits to ascertain which predictions will lead you closer to fulfilling the business objectives. Following to this, you have to be sure that you have all the data required to make prediction. In other cases, you can re-set goals, anytime.

Find the best Data Science Courses in Noida… At DexLab Analytics. Get detailed information on the website.

 

The blog has been sourced from — www.networkworld.com/article/3305329/internet-of-things/3-iot-challenges-that-keep-data-scientists-up-at-night.html

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more