Dexlab, Author at DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA - Page 33 of 80

R Programming, Python or Scala: Which is the Best Big Data Programming Language?

R Programming, Python or Scala: Which is the Best Big Data Programming Language?

For data science and big data, R, Python and Scala are the 3 most important languages to master. It’s a widely-known notion, organizations of varying sizes relies on massive structured and unstructured data to predict trends, patterns and correlations. They are of expectation that such a robust analysis will lead to better business decisions and individual behavior predictions.

In 2017, the adoption of Big Data analytics has spiked up to 53% in companies – says Forbes.

The story of evolution

To start with, big data is just data, after all. The entire game-play depends on its analysis – how well the data is analyzed so as to churn out valuable business intelligence. With years, data burgeoned, and it’s still expanding. The evolution of big data mostly happened because traditional database structures couldn’t cope with such multiplying data – scaling data became an important issue.

For that, here we have some popular big data programming languages. Dive down:

R Programming

R Programming is mainly used for statistical analysis. A set of packages are available for R named Programming with Big Data in R (pbdR), which encourages big data analysis, across multiple systems via R code.

R is robust and flexible; it can be run on almost every OS. To top that, it boasts of excellent graphical capabilities, which comes handy when trying to visualize models, patterns and associations within big data structures.

According to industry standards, the average pay of R Programmers is $115,531 per year.

For R language training, drop by DexLab Analytics.

Python

Compared to R, Python is more of a general-purpose programming language. Developers adore it, because it’s easy to learn, a huge number of tutorials are available online and is perfect for data analysis, which requires integration with web applications.

Python gives excellent performance and high scalability for a series of complicated data science tasks. It is used with high-in-function big data engines, like Apache Spark through available Python APIs.

Their Machine Learning Using Python courses are of highest quality and extremely student-friendly.

Let’s Take Your Data Dreams to the Next Level

Scala

Last but not the least, Scala is a general-purpose programming language developed mainly to address some of the challenges of Java language. It is used to write Apache Spark cluster computing solution. Hence, Scala has been a popular programming language in the field of data science and big data analysis, in particular.

There was a time when Scala was mandatory to work on Spark, but with the proliferation of many API endpoints approachable with other languages, this problem has been addressed. Nevertheless, it’s still the most significant and popular language for several big data tools, including Finagle. Also Scala houses amazing concurrency support, which parallelizes a whole many processes for huge data sets.

The average annual salary for a data scientist with Scala skills is $102,980.

In the end, you can never go wrong with selecting any one of the big data programming languages. All of them are equally good, productive and easy to excel on. However, Python is probably the best one to start off with.

For more updates or information on big data courses, visit DexLab Analytics.

The original article is here at – http://www.i-programmer.info/news/197-data-mining/11622-top-3-languages-for-big-data-programming.html

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

How Big Data Plays the Key Role in Promoting Cyber Security

The number of data breaches and cyber attacks is increasing by the hour. Understandably, investing in cyber security has become the business priority for most organizations. Reports based on a global survey of 641 IT and cyber security professionals reveal that a whopping 69% of organizations have resolved to increase spending on cyber security. The large and varied data sets, i.e., the BIG DATA, generated by all organizations small or big, are boosting cyber security in significant ways.

How Big Data Plays the Key Role in Promoting Cyber Security

Business data one of the most valuable assets of a company and entrepreneurs are becoming increasingly aware of the importance of this data in their success in the current market economy. In fact, big data plays the central role in employee activity monitoring and intrusion detection, and thereby combats a plethora of cyber threats.

Let’s Take Your Data Dreams to the Next Level

  1. EMPLOYEE ACTIVITY MONITERING:

Using an employee system monitoring program that relies on big data analytics can help a company’s human resource division keep a track on the behavioral patterns of their employees and thereby prevent potential employee-related breaches. Following steps may be taken to ensure the same:

  • Restricting the access of information only to the staff that is authorized to access it.
  • Staffers should use theirlogins and other system applications to change data and view files that they are permitted to access. 
  • Every employee should be given different login details depending on the complexity of their business responsibilities.

 

  1. INTRUSION DETECTION:

A crucial measure in the big data security system would be the incorporation of IDS – Intrusion Detection System that helps in monitoring traffic in the divisions that are prone to malicious activities. IDS should be employed for all the pursuits that are mission-crucial, especially the ones that make active use of the internet. Big data analytics plays a pivotal role in making informed decisions about setting up an IDS system as it provides all the relevant information required for monitoring a company’s network.

The National Institute of Standards and Technology recommends continuous monitoring and real-time assessments through Big Data analytics. Also the application of predictive analytics in the domain of optimization and automation of the existing SIEM systems is highly recommended for identifying threat locations and leaked data identity.

  1. FUTURE OF CYBER SECURITY:

Security experts realize the necessity of bigger and better tools to combat cyber crimes. Building defenses that can withstand the increasingly sophisticated nature of cyber attacks is the need of the hour. Hence advances in big data analytics are more important than ever.

Relevance of Hadoop in big data analytics:

  • Hadoop provides a cost effective storage solution to businesses.
  • It facilitates businesses to easily access new data sources and draw valuable insights from different types of data.
  • It is a highly scalable storage platform.
  • The unique storage technique of Hadoop is based on a distributed file system that primarily maps the data when placed on a cluster. The tools for processing data are often on the same servers where the data is located. As a result data processing is much faster.
  • Hadoop is widely used across industries, including finance, media and entertainment, government, healthcare, information services, and retail.
  • Hadoop is fault-tolerant. Once information is sent to an individual node, that data is replicated in other nodes in the cluster. Hence in the event of a failure, there is another copy available for use.
  • Hadoop is more than just a faster and cheaper analytics tool. It is designed as a scale-out architecture that can affordably store all the data for later use by the company.

 

Developing economies are encouraging investment in big data analytics tools, infrastructure, and education to maintain growth and inspire innovation in areas such as mobile/cloud security, threat intelligence, and security analytics.

Thus big data analytics is definitely the way forward. If you dream of building a career in this much coveted field then be sure to invest in developing the relevant skill set. The Big Data training and Hadoop training imparted by skilled professionals at Dexlab Analytics in Gurgaon, Delhi is sure to give you the technical edge that you seek. So hurry and get yourself enrolled today!

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

How Machine Learning and Sensors Help Detect Cyber Threats within Power Distribution Networks

Machine learning in marriage with cutting edge sensor technology helps alpha geeks detect and assess cyber-physical attacks across power-distribution channels.

How Machine Learning and Sensors Help Detect Cyber Threats within Power Distribution Networks

Today, losing power and imagining a life without technology sounds unreal. It’s more than just an inconvenience. The truth is we rely on electricity much more than we even do realize. Even though you are not a techie or someone belonging from the IT domain, you still stay dependent on electricity and power. They have become the BASICS.

For this reason or more, power companies have initiated a ‘deep dependency’ concept, Smart Grid – it’s an effective and powerful power-distribution structure. It’s originally a power-line internet that harbors exceptional capabilities within.

Let’s Take Your Data Dreams to the Next Level

Machine Learning and Sensors to Ensure Security to Power Grids

A team of eminent researchers are toiling rigorously to integrate machine-learning algorithms, cybersecurity methodology and commercially-available power-system sensor technology into a security monitoring and analysis framework to support power grids.

The team is at present working on the framework’s architecture for detection of cyber-physical attacks on any power-distribution network. “To do this they are using micro-Phasor Measurement Units (µPMUs) to capture information about the physical state of the power distribution grid,” explains Kathy Kincade, Lawrence Berkeley National Laboratory. “They then combine this data with SCADA (Supervisory Control and Data Acquisition) information to provide real-time feedback about system performance.”

Note: Kathy Kincade published a Lawrence Berkeley National Laboratory press release: Combination of Old and New Yields Novel Power Grid Cybersecurity Tool, which talks elaborately on this issue.

artificial_intelligence_machine_learning_network_thinkstock_671750598-100724432-large.3x2

The notion here is to keep a close watch on the physical behavior of the components within a particular electric grid to understand when devices are under attack, how they are manipulated weirdly. These devices act as a redundant set of measurements that offers veritable ways to monitor everything that’s going within a power distribution grid.

One of the researchers, Sean Peisert (Berkeley Labs) articulates the importance of redundant measurements permitted by implementing both µPMU and SCADA devices. He further says, “Individually it might be possible for an attacker to manipulate what is being represented by any single sensor or source of information, which could lead to damage of the power grid. This approach provides the redundancy and therefore resilience in the view that is available to grid operators.”

System redundancy comes with an additional benefit of distinguishing real attacks from false alarms by comparing µPMU measurements to what the device reports.

An Algorithm for Real-time Reporting

The proud researchers formulated an algorithm in 1954 for their machine learning endeavors. The algorithm aids software in identifying if measurements like active power, reactive power and current magnitude are normal or abnormal by discerning robust changes across the physical environment.

The Last Thoughts

Cyber attacks are becoming increasingly widespread. Every other day, you might find some headlines or tech page news surfacing out, intensifying how cyber attacks are plaguing our lives, digitally. Therefore, it’s high time to learn from the pundits how to work on the issue.

As Peisert concludes, “Using high-resolution sensors in the power-distribution grid and a set of machine-learning algorithms that we developed, in conjunction with a simple model of the distribution grid, our work can be deployed by utilities in their distribution grid to detect cyberattacks and other types of failures,” it stresses on the significance of machine learning algorithms to combat such attacks.

The original article first appeared in – https://www.techrepublic.com/article/power-grid-cybersecurity-tool-uses-machine-learning-and-sensors-to-detect-threats

Get enroll in an exhaustive Machine Learning training course from DexLab Analytics today! Their Machine Learning Using Python course is power-packed with both theoretical and practical knowledge: check the course details.

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Reigning the Markets: 4 Most Influential Analytics Leaders of 2018

Data analytics in India is grabbing attention. Data and analytics, together, they play a key role in delivering business opinions, which are high-yielding and relatively new. At the helm of such robust data analytics growth are leaders from numerous organizations who introspect into data to conjure up decisions as a seamlessly as possible. They are masterminds in the world of data analytics.

Reigning the Markets: 4 Most Influential Analytics Leaders of 2018

Here, we will talk about 4 most influential analytics leaders who acted as pioneers of bringing in newer technologies and life-changing innovations into the field of analytics, machine learning, artificial intelligence and big data across diverse domains.

Debashish Banerjee, Managing Director, Deloitte Analytics

With 17 years and more experience in predictive modeling, data analytics and data science, Mr. Banerjee’s extensive contribution in the fields of actuarial risk, data mining, advanced analytics and predictive modeling in particular is phenomenal. He started his career with GE, and initiated and headed insurance analytics, pricing and reserving team of GE, India – one of the firsts in India.

In 2005, he shifted to Deloitte with a mission to initiate the advanced analytics and modeling practice in India, through which he manages and offers leadership support to the Deloitte Consulting’s Data Science practices that stresses on AI, predictive modeling, big data and cognitive intelligence. He mostly worked in marketing, customer and HR domains.

Let’s Take Your Data Dreams to the Next Level

Kaushik Mitra, Chief Data Officer and Head of Big Data & Digital Analytics, AXA Business Services (ABS)

Experienced for over 25 years in integrating analytics, technology and marketing worldwide, Kaushik Mitra dons a lot many hats. Besides assuming leadership roles for diverse domains, like AI, analytics, data science, business intelligence and modeling, Mr. Mitra is at present involved in driving an array of data innovation coupled with technology restructuring in the enterprise, as well as coordinating GDPR implementation in ABS.

Before joining ABS, he worked with Fidelity Investments in Bangalore, where he played a pivotal role in establishing their data science practice. Armed with a doctorate in Marketing from the US, he is a notable figure in the world of analytics and marketing, along with being a frequent speaker in Indian industry networks, like NASSCOM and other business forums.

Ravi Vijayaraghavan, Vice President, Flipkart

Currently, Ravi Vijayaraghavan and his team are working on how to leverage analytics, data and science to improve decision-making capabilities and influence businesses across diverse areas within Flipkart. Before joining Flipkart, he used to work as Chief Data Scientist and Global Head of the Analytics and Data Sciences Organization at [24]7.ai. It was here that he created, developed, implemented and optimized machine learning and analytics driven solutions. Also, he held important leadership portfolios at Mu Sigma and Ford Motor Company.

Deep Thomas, Chief Data & Analytics Officer, Aditya Birla Group

“Delivering nothing but sustained and rising profitability figures through potent digital transformation and leveraging data, business analytics, multi-disciplinary talent pool and innovative processes” – has been the work mantra of Deep for more than two decades. Being the Chief Data & Analytics Officer for Aditya Birla Group, he spearheads top of the line analytics solutions and frames organization-wide initiatives and tech-induced programs to enhance business growth, efficiencies and productivity within an organization.

Initially, he headed Tata Insights and Quants, the much acclaimed Tata Group’s Big Data and Decision Science Company. Apart from this, he held a variety of leadership positions in MNCs like Citigroup, HSBC and American Express across US and India to boost global digital and business transformation.

This article has been sourced from – https://analyticsindiamag.com/10-most-influential-analytics-leaders-in-india-2018

For more such interesting blogs and updates, follow DexLab Analytics. It’s a premier data science certification institute in Delhi catering to data aspirants. Take a look at their data science courses in Delhi: they are program-centric and nicely curated.

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Master the Art and Science of MS Excel with These Cool Tips and Tricks

Spreadsheets are savior. In majority of industries, they have become a necessity. With ample filling rows and columns inundated with data points, Excel is the need of the hour. It is a top notch application for creating and managing spreadsheets.

Master the Art and Science of MS Excel with These Cool Tips and Tricks

But, remember the bigger the Excel gets, the uglier it starts to get, and that’s the time when you need to use a set of tricks and features to keep a tab on the data compilation. Here we’ve compiled a set of tips on Excel to help enhance your productivity.

Read on.

Select All

For selecting a specific grid of cell, no worries; simply click and drag. But what happens, when you want to select the entire lot? In cases like such, you can either use a keyboard shortcut Ctrl + “A” in Windows 10 and Command + “A” in MacOS or directly go up to the smaller cell in the upper-left corner and hit it.

Hiding or Unhiding Rows

Want to hide rows or columns of data? It mostly happens when you want to print copies of any event, where the audience needs to see only the important parts. Fortunately, it’s quite easy to hide rows and columns in Excel. Right click it, and Hide. That’s all.

Note: When you’re unhiding rows and columns, both, you have to unhide one axis at a time.

 

Drop Down List

Drop down menu is the best option when you want to restrict the stream of options a user puts into a cell. You can easily create one that provides users a comprehensive list of options to choose from. Just, choose a cell, go to the data tab and click on Validate.

Use of VLOOKUP

Want to retrieve information from a specified cell? For an instance, suppose you possess an inventory of a store, and want to check the price of any single item. You can use Excel’s VLOOKUP function. It lets you select a range of columns consisting relevant data, a particular column to pick out the output and a cell to deliver output at.

Shading Every Other Row

Spreadsheets can be really boring, and if you’ve got lots of data, the chances of reader’s eyes drifting here and there get high. Hence, adding a dash of color on the spreadsheet will try to fix the gaze of the viewers. So try shading rows of importance. It will make them more visible and prompt to the eyes.

To color the entire spreadsheet, select all. And if you want to color any particular area, apply effects only on that region.

Concatenate

If you want to reorganize data and integrate information from different cells all into a single field, use concatenate function.

Wrap Text

What happens when a lot of text gets accumulated in a single cell? Obviously, the text spills over into adjacent cells, which doesn’t look nice visually.

Luckily, it’s easy to wrap a text within a cell. Just select the cell with more text, right-click and select Format Cells.

Now, get ready to master Excel!

Let’s Take Your Data Dreams to the Next Level

DexLab Analytics is a top notch Excel institute in Delhi that caters to the needs of MS Excel aspirants. Their Advanced Excel course in Gurgaon is assembled by the experts and curated to perfection!

The blog has been sourced from – https://www.digitaltrends.com/computing/microsoft-excel-tips-and-tricks

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Risk Analytics: How to Frame Smarter Insights with Organizational Data

Companies are launching cloud-based data analytics solutions with an aim to aid banks improve and manage their risk efficiently and streamline other activities in the most cost-effective ways.

Risk Analytics: How to Frame Smarter Insights with Organizational Data

Risk analysis is a major constituent of banking circle. Analytics-intensive operations are being run in almost all banking institutions, including cyber-security, online data theft and third-party management. The concept of risk is not something new. For years, it has been the key responsibility of C-suite professionals, but the extravagant amount of awareness and recognition associated with risk analytics was missing then. Also, the regulatory and economic landscape of the world is changing and becoming more intense – hence, risks need to be managed adequately. The executive teams should make risk analytics their topmost agenda for better organization functioning.

Why risk analytics?

The first and foremost reason to incorporate risk analytics is to measure, quantify and forecast risk with amped certainty. Analytics help in developing a baseline for risk assessment in an organization by working on several dimensions of risk and pulling them in a single unified system for better results.

What are the potential benefits of risk analytics?

  • Risk analytics help in turning guesswork into meaningful insights by using a number of tools and techniques to draw perspectives, determine calculable scenarios and predict likely-to-happen events.

  • An organization stay exposed to risk. Why? Because of a pool of structured and unstructured data, including social media, blogs, websites available on both internal and external platforms. With risk analytics, you can integrate all these data into a single perspective offering actionable insights.

  • Risk is a largely encompassing concept, spilling across several domains of organizational structure that at times it can really be hard to know how to manage risk and pull out meaningful insights. In such situations, risk analytics play a pivotal role in ensuring organizations develop foresight for potential risks and provide answers to difficult questions so as to create a pathway for action.

Things to do now:

Ask the right questions

Analytics means research. It ushers you to ask questions and dig deeper into risk-related stuffs. But framing random questions don’t help. To have a real impact, conjure up a handful of questions that hits the real topic.

Understand interdependencies

Risk pierces into organizational boundaries. And analytics work by offering cross-enterprise insights, by inferring conclusions throughout the business. That makes it effective to tackle far-reaching issues.

Streamline productive programs

Analytics help decision-makers introspect and evaluate risks, as well as rewards – related to operational and strategic decisions. Adding insights into pre-determined actions to determine and curb risks yield sustainable value for the program, which in the end improves overall program performance.

Let’s Take Your Data Dreams to the Next Level

In the end, risk analytics seem to be quite a daunting subject to take up, but the truth is, some organizations are really doing well in managing their risks. If you are frustrated somehow and this whole concept of risk analytics baffles you more, take up SAS risk management certification. DexLab Analytics, a premier market risk training institute offers incredible market risk courses for data-hungry aspirants.

 

The article has been sourced from – https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Deloitte-Analytics/dttl-analytics-us-da-oriskanalytics3minguide.pdf

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

How Data is Found Influencing Political Campaigns Online

How Data is Found Influencing Political Campaigns Online

Data is and has always been the heart and blood of politics. In the 21st century, digital transformation has hit politics hard. Ambitious politicians and lobbyists invest hundreds of dollars on framing potential campaigns and agendas: in the past US presidential elections, as much as $5 billion dollars was spent, if not less, out of which estimated $1 billion was set aside for digital advertising alone.

Online information has already started weaving a change in perspective of people. They tend to manipulate us. Few are even of the notion that big data is being used to develop customized political advertising that challenges our rational minds and change our voting pattern. But do you think it’s true? Can data have that kind of intense impact?

Cambridge Analytica Data Breach

In the wake of Facebook and Cambridge Analytica data breach, where data of 50 million Facebook users were compromised, a compelling issue of data safety and protection has come to the forefront of our conscience. Cambridge Analytics is a British political consulting firm that works by integrating data mining, data analysis and brokerage with strategic communication for successful electoral processes.

A recent terrifying revelation suggested that this company has used Facebook users’ confidential data to predict personalities and then tailor personalized advertizing according to their psychological attributes. For years, this company has been performing data analysis services strategizing various presidential campaigns for US and UK. This March, the data analytics firm has been alleged to have harvested information from more than 50 million Facebook users without their knowledge to build a system for targeting US voters. The employees of the firm were also found boasting about using fake news, fabricated sex scandals and cheap tricks to swing electoral campaigns across the globe and this has created a big uproar in the industry.

From this, anyone can fathom the power of data in politics and framing opinions. Digital technologies have become a powerful tool for both positive and negative change. Technology remains remote, pivotal and paternalist. The political systems are changing, and so are we. That’s why it’s high time for all of us to be cautious, prudent and have a voice of our own.

2

How to Enhance Online Campaign Success Legally

While social media scores high, email actually pulls the reigns, when it comes to raising funds for political campaigns online.

Mitt Romney’s 2012 campaign revealed about 70% donations came through emails.

During the Obama campaign, the figures were as high as 90% to be precise.

Besides raising funds online via email, integration of myriad digital marketing channels with smart data is crucial to rally in unconditional support on behalf of candidates.

Here are ways to boost your online campaign success:

  • Mobile ads – Increase relevancy for micro-targeted audience
  • Actionable TV – Using set-top-box information, particular demographics has to be targeted
  • Retargeting – Targeting should be focused on historical donors, interested in your policies
  • SEO decisions – Upload content suitable for the target audience and improve search rankings
  • Email messages – it would segment your lists while enhancing campaign results

To put simply, better data yields positive results for political campaigns, along with supporting fundraising, awareness and presence. However, remember, not all data is clean and safe and not all data providers are credible and honest. Watch the news, join the drive, but stay true to your opinions and insights. They will never fail you.

Get trained by the experts from DexLab Analytics on big data hadoop. It’s a premier data analytics training institute in Delhi NCR that offers incredible big data training to the students.

The article has been sourced from:

https://www.theguardian.com/commentisfree/2017/mar/06/big-data-cambridge-analytica-democracy

https://webbula.com/how-data-helps-political-campaigns-succeed

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

5 Expected Changes You Are Going to Witness Once You Move to SaaS

Moving to the cloud takes time. One of our friends started with Salesforce in 2009, after 5 years they introduced G Suite (widely known as Google Apps during that time) and it’s now in 2017 that they have adopted a fully cloud-based electronic health record facility. It took 10 years for an organization to resort to a handful number of installed applications for smooth handling of specialized tasks.  

5 Expected Changes You Are Going to Witness Once You Move to SaaS

Nevertheless, their shift to Software-as-a-Service (SaaS) has had an impact on IT spending. Though the expenditure varies from company to company, every organization must have experienced these 5 changes highlighted below:

 

Let’s Take Your Data Dreams to the Next Level

Better networks

Unsurprisingly, people need and expect faster internet speed these days. Even small businesses have connections that deliver 250Mbps down and 75Mbps (or more) up. An interesting switch is being observed in infrastructure. Today, more or less any medium-organization boasts of 802.11n or 802.11ac WIFI networks, which was unimaginable even few years ago. Deploying wireless mesh devices has become the order of the day now.

Lesser computer upgrades

There was a time, when we used to think that we have to replace our computers every three or five years. In several cases, we had even planned to make a few upgrades to the hardware to keep them running (RAM and hard-drive replacement was a common thought).

But in reality, organizations seldom have to replace parts. In most offices, five year old desktops perform perfectly in delivering the right results. This means definitely days of upgrades are over, all that matters is a faster internet speed and robust app development.

 

More usage of “plug-in and use” systems

More and more companies are seeking so-called “sealed” systems. Though some big companies still go on deploying standardized drive images, but increasingly organizations are found picking off-the-shelf sealed devices, like all-in-one desktops and non-use-configurable laptops.

 

As organizations are moving towards SaaS, Chromebooks are becoming increasingly famous. In fact, more than 20% of the team mentioned in the beginning of the blog uses a Chromebook as their primary work device.

Longer life for devices

Devices, like desktops and laptops that have embraced SaaS seem to have a longer lifecycle. As SaaS mostly depends on browser and network performance, the need for replacing devices has decreased to a great extent. Systems work totally until the device fails to perform or no longer in a position to receive any updates. Also, with SaaS, crucial data don’t remain solely on the device, hence if a system fails, little seems to be lost.

Considerable attention to the peripherals

Peripherals are intimidating. A large number of conventional desktop units have a scanner, printer and copier devices that are supported by a locally installed Windows software or server. Organizations can easily find alternatives of these devices, but it will take some time and effort as well. Few applications and sectors still suffer from minor or significant glitches, but over time, we hope peripherals and accessories will start showing signs of improvements.

 

What changes have you noticed in cloud computing and storage? How do you think the landscape of IT has changed over the past decade?

 

 

To better understand the intricacies of cloud computing and data storage, opt for business analytics course in Delhi from DexLab Analytics. They offer excellent analyst courses in Delhi at really affordable prices. Check out the course itinerary today!

 

The article has been sourced from – https://www.techrepublic.com/article/5-changes-companies-will-see-after-moving-to-saas

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Here’s Why Automation Is Gaining Accolades All over the World?

Here’s Why Automation Is Gaining Accolades All over the World?

Over the last few decades and more, if there’s anything that has continuously evolved, surprising us with something new at each turn, it’s TECHNOLOGY. Technological advancements have come to a point where people and businesses have started relying on Automation.

Automation is the technology by which a process is performed entirely by means of various control systems and equipments without human assistance. The purpose is to enhance productivity, deliver faster results and save costs, depending on the industry and the extent to which automation is being applied.

Automation, which is mostly about streamlining the work process, can take place either by means of implementing intelligence into the existing systems or by replacing the same. Some of these systems operate without human interference while others support humans and pave ways for better productivity.

2

Leveraging Automation for Good

How to introduce automation into the workflow and the procedure of doing that has been a matter of concern for most entrepreneurs. Putting machines to work requires certain considerations. Following are a few smart tips for introducing automation to your business and leveraging the most out of it.

  • Putting the machines to work for you necessitates you to implement the automation tools gradually. This should always be followed by a close evaluation of the existing process so that it is applied to where streamlining is needed the most.
  • Automation is an instant success when you start things manually, but sometimes things can take a downturn if you lack enough knowledge of the domain. The switch to automation should be planned ahead with care.
  • Automation is a change that most people will be reluctant to adopt at least initially. So, it is always better to ensure that there is a solid change management strategy in place to make the technology actually make lives easier and not otherwise.

Automation isn’t something NEW ON THE BLOCK

The very notion of automation has been in the minds of entrepreneurs as well as traditionalists for around centuries. For an example, an elevator that’s been in existence for so many years is an automation tool for mobility. Recently, massive breakthroughs have been achieved in this budding field, and cloud computing is one of them. It has driven the cost of storage solutions really down, while pushing machine learning skills to a new high.

In short, while automation has always been more of a IT tool, it’s now finding its footing in other domains within an organization. “Whether it’s a catalog or an app, it now allows me as a consumer to control things when they’re happening,” says Marc Wilkinson, CTO for Workplace and Mobility at DXC.

Automation and employment crunch

As it’s said, automation isn’t about eliminating jobs instead it’s more about creating efficiencies. If the work done in twice the speed, it would be more efficient and employer will benefit from productivity gains and the employees in the event will hit off high-impact projects.

So, in a sense, automation won’t entirely result in lower employee headcount, though it may affect a certain kind of employment. High-touch occupations will witness limited impact. For an instance, hospitals have to very much human-to-human; they can’t go totally automized.

In case, you are thinking of having a career in automation, get enrol in a good Machine Learning Certification course. DexLab Analytics offers some of the best machine learning training in Delhi, NCR region: go check out the course itinerary.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more