Dexlab, Author at DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA - Page 32 of 80

How Credit Unions Can Capitalize on Data through Enterprise Integration of Data Analytics

credit risk analysis

To get valuable insights from the enormous quantity of data generated, credit unions need to move towards enterprise integration of data. This is a company-wide data democratization process that helps all departments within the credit union to manage and analyze their data. It allows each team member easy-access and proper utilization of relevant data.

However, awareness about the advantages of enterprise-wide data analytics isn’t sufficient for credit unions to deploy this system. Here is a three step guide to help credit unions get smarter in data handling.

Improve the quality of data

A robust and functional customer data set is of foremost importance. Unorganized data will hinder forming correct opinions about customer behavior. The following steps will ensure that relevant data enters the business analytics tools.

  • Integration of various analytics activity- Instead of operating separate analytics software for digital marketing, credit risk analytics, fraud detection and other financial activities, it is better to have a centralized system which integrates these activities. It is helpful for gathering cross-operational cognizance.
  • Experienced analytics vendors should be chosen- Vendors with experience can access a wide range of data. Hence, they can deliver information that is more valuable. They also provide pre-existing integrations.
  • Consider unconventional sources of data- Unstructured data from unconventional sources like social media and third-parties should be valued as it will prove useful in the future.
  • Continuous data cleansing that evolves with time- Clean data is essential for providing correct data. The data should be organized, error-free and formatted.

Data structure customized for credit unions

The business analytics tools for credit unions should perform the following analyses:

  • Analyzing the growth and fall in customers depending on their age, location, branch, products used, etc.
  • Measure the profit through the count of balances
  • Analyze the Performances of the staffs and members in a particular department or branch
  • Sales ratios reporting
  • Age distribution of account holders in a particular geographic location.
  • Perform trend analysis as and when required
  • Analyze satisfaction levels of members
  • Keep track of the transactions performed by members
  • Track the inquires made at call centers and online banking portals
  • Analyze the behavior of self-serve vs. non-self serve users based on different demographics
  • Determine the different types of accounts being opened and figure out the source responsible for the highest transactions.

User-friendly interfaces for manipulating data

Important decisions like growing revenue, mitigating risks and improving customer experience should be based on insights drawn using analytics tools. Hence, accessing the data should be a simple process. These following user-interface features will help make data user-friendly.

Dashboards- Dashboards makes data comprehensible even for non-techies as it makes data visually-pleasing. It provides at-a glance view of the key metrics, like lead generation rates and profitability sliced using demographics. Different datasets can be viewed in one place.

Scorecards- A scorecard is a type of report that compares a person’s performance against his goals. It measures success based on Key Performance Indicators (KPIs) and aids in keeping members accountable.

Automated reports- Primary stakeholders should be provided automated reports via mails on a daily basis so that they have access to all the relevant information.

Data analytics should encompass all departments of a credit union. This will help drawing better insights and improve KPI tracking. Thus, the overall performance of the credit union will become better and more efficient with time.

Technologies that help organizations draw valuable insights from their data are becoming very popular. To know more about these technologies follow Dexlab Analytics- a premier institute providing business analyst training courses in Gurgaon and do take a look at their credit risk modeling training course.

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

DexLab Analytics is Heading a Training Session on CRM Using SAS for Wells Fargo & Company, US

credit risk modelling

We are happy to announce that we have struck gold! Oops, not gold literally, but we are conducting an exhaustive 3-month long training program for the skilled professionals from Wells Fargo & Company, US. It’s a huge opportunity for us, as they have chosen us, out of our tailing contemporaries and hope we do fulfill their expectations!

Wells Fargo & Company is a top notch US MNC in the field of financial service providers. Though headquartered in San Francisco, California and they have several branches throughout the country and abroad. They even have subsidiaries in India, which are functioning well alike. Currently, it is the second-largest bank in home mortgage servicing, deposits and debit cards in the US mainland. Their skilled professionals are adept enough to address complicated finance-induced issues, but they need to be well-trained on tackling Credit Risk Management challenges, as CRM is now the need of the hour.

Our consultants are focused on imparting much in-demand skills on Credit Risk Modeling using SAS to the professionals for the next three months. The total course duration is of 96 hours and the sessions are being conducted online.

 

 

 

 

In this context, the CEO of DexLab Analytics said, “This training session is another milestone for us. At DexLab Analytics, being associated with such a global brand name, Wells Fargo is a matter of great honor and pride, which I share with all my team members. Thanks to their hard work and dedication, we today possess the ability and opportunity to conduct exhaustive training program on Credit Risk Management using SAS for the consultants working at Wells Fargo & Company.”

“The training session starts from today, and will last for three-months. The total session will span over 96 hours. Reinforcing our competitive advantage in the process of development and condoning data analytics skills amongst the data-friendly communities across the globe, we are conducting the entire 3-month session online,” he further added.

Credit Risk Management is crucial to survive in this competitive world. Businesses seek this comprehensive tool to measure risk and formulate the best strategy to be executed in future. Under the umbrella term CRM, Credit Risk Modeling is a robust framework suitable to measure risk associated with traditional crediting products, like credit score, financial letters of credit and etc. Excessive numbers of bad loans are plaguing the economy far and large, and in such situations, Credit Risk Modelling using SAS is the most coveted financial tool to possess to survive in these competitive times.

In the wake of this, DexLab Analytics is all geared up to train the Wells Fargo professionals in the in-demand skill of CRM using SAS to better manage financial and risk related challenges.

To read our Press Release, click:

DexLab Analytics is organizing a Training Program on CRM Using SAS for Wells Fargo Professionals

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Top 3 Tableau Apps to Make the Most Out of Business Intelligence Software

Top 3 Tableau Apps to Make the Most Out of Business Intelligence Software

Dashboard visualization is big data’s next in-trend topic. Well-presented information boosts our processing capabilities. Programs like Tableau aim to do exactly that. Tableau uses state-of – art and highly functional graphics to transform big data into something pleasant to look at. More importantly, it has the profound ability to source data from cloud as well as hard drive units of various shapes and sizes, while simultaneously cross-paneling the information into meaningful graphs, charts and tables. This in turn have a remarkable impact on the overall speed to market time through the conversion of input information into interactive, actionable choices. As a result it speeds up the process of realizing the business decisions.

Today, there exists an intense competition between enterprise editions of Tableau. Many of these upon realizing the market value of the incredible visuals which are unique to Tableau have chosen build on it. This has been achieved through the addition of some useful functions and features. Following are the top 3 apps among these enterprise editions of Tableau.

  1. Alteryx

Alteryx fuels Tableau visualizations with an advanced level of data blending, transposing and analysis. As a result it is more efficient in presenting the data. It makes use of automated progresses thereby reducing the need to perform manual actions. Alteryx has been impressive in its exploration of spatial, predictive and statistical analysis, ease of transposability using drag/drop facility, and also because coding is not a requirement. It is capable of handling big data or cloud data in sequence with local or hard drive data. Collaborative information becomes scalable and more manageable.

  1. BI Connector

BI Connector is a self-serving data performer which seamlessly bridges the functions of Tableau and OBIEE without demanding the knowledge of an IT expert. Strong security protocol from OBIEE is utilized to safeguard data while it’s being exported, such as publishing worksheets with the drag/drop facility. The dashboard interface makes collaborating data more flexible. Also, the fluidity of its navigation is user-friendly and practical. Services on a server and desktop are equally powerful.

  1. Dataiku

Dataiku boosts the ability of its users to ‘think’ data. Its performance and credibility are honed through additional visual interfaces. In particular, Dataiku DSS lays emphasis on a capability pertaining to trending and predictive data. The users can even chose to share out code snippets or create their own model. This program exclusively caters to big data infrastructures. Dataiku permits users to quickly comprehend complex feature interactions and analyze coefficients. The best part about all these processes is their navigation which uses a rather visually-pleasing interface.

Hence Tableau enables users to interrelate with data and then proceed with its visualization which includes the creation of interactive and sharable dashboards. It enables the world’s largest organizations unleash the power of their most valuable asset- data. To know more about Data Visualization take a look at the Tableau BI Certification course conducted by DexLab Analytics-a premier institute offering professional courses on data science.

References:

https://www.biconnector.com/blog/3-apps-to-get-the-most-out-of-tableau/

http://www.dashboardinsight.com/articles/digital-dashboards/fundamentals/what-is-a-dashboard.aspx

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Foster your Machine Learning Efforts with these 5 Best Open Source Frameworks

Foster your Machine Learning Efforts with these 5 Best Open Source Frameworks

Machine Learning is rapidly becoming the mainstream and changing the way we carry out tasks. While many factors have contributed to this current boom in machine learning, the most important reason is the wide availability of open source frameworks.

’Open source’ refers to a program that is created as a collaborative effort in which programmers improve the code and share the changes within the community. Open source sprouted in the technological community in response to proprietary software owned by corporations. The rationale for this movement is that programmers not concerned with proprietary ownership or financial gain will produce a more useful product for everyone to use. 

Framework: It refers to a cluster of programs, libraries and languages that have been manufactured for use in application development. The key difference between a library and a framework is ‘’inversion of control’’. When a method is summoned from a library, the user is in control. With a framework the control is inverted- the framework calls the user.

If you are plunging full-fledged into machine learning, then you clearly need relevant resources for guidance. Here are the top 5 frameworks to get you started.

  1. TensorFlow:

TensorFlow was developed by the Google Brain Team for handling perceptual and language comprehending tasks. It is capable of conducting research on machine learning and deep neural networks. It uses a Python-based interface. It’s used in a variety of Google products like handling speech recognition, Gmail, photos and search.

A nifty feature about this framework is that it can perform complex mathematical computations and observe data flow graphs. TensorFlow grants users the flexibility to write their own libraries as well. It is also portable. It is able to run in the cloud and on mobile computing platforms as well as with CPUs and GPUs.

  1. Amazon Machine Learning (AML):

AML comes with a plethora of tools and wizards to help create machine learning models without having to delve into the intricacies of machine learning. Thus it is a great choice for developers. AML users can generate predictions and utilize data services from the data warehouse platform, Amazon Redshift. AML provides visualization tools and wizards that guide developers. Once the machine learning models are ready  AML makes it easy to obtain predictions using simple APIs.

  1. Shogun:

 Abundant in state-of-the-art algorithms, Shogun makes for a very handy tool. It is written in C++ and provides data structures for machine learning problems. It can run on Windows, Linux and MacOS. Shogun also proves very helpful as it supports uniting with other machine learning libraries like SVMLight, LibSVM, libqp, SLEP, LibLinear, VowpalWabbit and Tapkee to name a few.

  1. NET:

Accord.NET is a machine learning framework which possesses multiple libraries to deal with everything from pattern recognition, image and signal processing to linear algebra, statistical data processing and much more. What makes Accord so valuable is its ability to offer multiple things which includes 40 different statistical distributions, more than 30 hypothesis tests, and more than 38 kernel functions.

  1. Apache Signa, ApacheSpark MLibApache, and Apache Mahout:

These three frameworks have plenty to offer. Apache Signa is widely used in natural language processing and image recognition. It is also adept in running a varied collection of hardware.

Mahout provides Java libraries for a wide range of mathematical operations. Spark MLlib was built with the aim of making machine learning easy. It unites numerous learning algorithms and utilities, including classification, clustering, dimensionality reduction and many more.

 With the advent of open source frameworks, companies can work with developers for improved ideas and superior products. Open source presents the opportunity to accelerate the process of software development and meet the demands of the marketplace.

Boost your machine learning endeavors by enrolling for the Apache Spark training course at DexLab Analytics where experienced professionals ensure that you become proficient in the field of machine learning.

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

How Fintechs Help Optimize the Operation of Banking Sector

How Fintechs Help Optimize the Operation of the Banking Sector

Financial technology- Fintech plays a key role in the rapidly evolving payment scenario. Fintech companies provide improved solutions that affect consumer behavior and facilitate widespread change in the banking sector. Changes in data management pertaining to the payment industry is occurring at a fast pace. Cloud-based solution and API technology (Application Programming Interfaces) has played a major role in boosting the start-up sector of online payment providers like PayPal and Stripe. As cited in a recent PwC report over 95% of traditional bankers are exploring different kinds of partnerships with Fintechs.

 Interpreting consumers’ spending behavior has enhanced payment and data security. Credit risk modeling help card providers identify fraudulent activities. The validity of a transaction can be checked using the GPS system in mobile phones. McKinsey, the consulting firm has identified that the banking sector can benefit the most from the better use of consumer and market data.  Technological advancements have led to the ease of analyzing vast data sets to uncover hidden patterns and trends. This smart data management system helps banks create more efficient and client-centric solutions. This will help banks to optimize their internal system and add value to their business relationship with customers.

Role of Big Data

 Over the past two years, the digital revolution has created more data than in the previous history of humankind. This data has wide-ranging applications such as the banks opening their credit lines to individuals and institutions with lesser-known credit-score and financial history. It provides insurance and healthcare services to the poor. It also forms the backbone of the budding P2P lending industry which is expected to grow at a compound annual growth rate (CAGR) of 48% year-on-year between 2016 and 2024.

The government has channelized the power of digital technologies like big data, cloud computing and advanced analytics to counter frauds and the nuisance of black money. Digital technologies also improve tax administration. Government’s analysis of GST data states that as on December 2017, there were 9.8 million unique GST registrations which are more than the total Indirect Tax registrations under the old system. In future big data will help in promoting financial inclusion which forms the rationale of the digital-first economy drive.

Small is becoming Conventional

Fintechs apart from simplifying daily banking also aids in the financial empowerment of new strata and players. Domains like cyber security, work flow management and smart contracts are gaining momentum across multiple sectors owing to the Fintech revolution. For example workflow management solution for MSMEs (small and medium enterprises) is empowering the industry which contributes to 30% of the country’s GDP. It also helps in the management of business-critical variables such as working capital, payrolls and vendor payments. Fintechs through their foreign exchange and trade solutions minimizes the time taken for banks to processing letter of credit (LC) for exporters. Similarly digitizing trade documents and regulatory agreements is crucial to find a permanent solution for the straggling export sector.

Let’s Take Your Data Dreams to the Next Level

Regulators become Innovators

According to the ‘laissez-faire’ theory in economics, the markets which are the least regulated are in fact the best-regulated. This is owing to the fact that regulations are considered as factors hindering innovations. This in turn leads to inefficient allocation of resources and chokes market-driven growth. But considering India’s evolving financial landscape this adage is fast losing its relevance. This is because regulators are themselves becoming innovators.

The Government of India has taken multiple steps to keep up with the global trend of innovation-driven business ecosystem. Some state-sponsored initiatives to fuel the innovative mindset of today’s generation are Startup India with an initial corpus of Rs 10,000 crore, Smart India Hackathon for crowd-sourcing ideas of specific problem statements, DRDO Cyber Challenge and India Innovation growth Program. This is what enabled the Indian government to declare that ‘young Indians will not be job seekers but job creators’ at the prestigious World Economic Forum (WEF).

From monitoring policies and promoting the ease of business, the role of the government in disruptive innovations has undergone a sea change. The new ecosystem which is fostering innovations is bound to see a plethora of innovations seizing the marketplace in the future. Following are two such steps:

  • IndiaStack is a set of application programming interface (APIs) developed around India’s unique identity project, Aadhaar. It allows governments, businesses, start-ups and developers to utilize a unique digital infrastructure to solve the nation’s problems pertaining to services that are paperless, presence-less and cashless.
  • NITI Ayog, the government’s think tank is developing Indiachain, the country’s largest block chain. Its vision is to reduce frauds, speed up enforcement of contracts, increase transparency of transactions and boost the agricultural economy of the country. There are plans to link Indiachain to IndiaStack and other digital identification databases.

As these initiatives start to unfold, India’s digital-first economy dream will soon be realized.

Advances in technologies like Retail Analytics and Credit Risk Modeling will take the guesswork and habit out of financial decisions. ‘’Learning’’ apps will not only learn the habit of users but will also engage users to improve their spending and saving decisions.

To know more about risk modeling follow Dexlab Analytics and take a look at their credit risk analytics and modeling training course.

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

5 Examples that Show Artificial Intelligence is the Order of the Day of Daily Life

Artificial Intelligence is no more an elusive notion from science fiction; in fact, it’s very much in use in everyday life. Whether you realize it or not, the influence of AI has grown manifold, and is likely to increase further in the coming years.

5 Examples that Show Artificial Intelligence is the Order of the Day of Daily Life

Here are a few examples of AI devices that lead you to a brighter future. Let’s have a look:

Virtual Personal Assistants

The world around you is full of smart digital personal assistants – Google Now, Siri and Cortana though available on numerous platforms, such as Android, Ios and Windows Mobile strives to seek meaningful information for you, once you ask for it using your voice.

In these apps, AI is the power giver. With the help of AI, they accumulate information and utilize that data to better understand your speech and provide you with favorable results that are tailor-made just for you.  

Smart cars

Do you fantasize about reading your favorite novel, while driving to office? Soon, it might be the reality! Google’s self-driving car project and Tesla “autopilot” characteristic are two latest innovations that have been stealing the limelight lately. In the beginning of this year, there was a report that, Google developed an algorithm that could potentially allow self-driving cars learn the basics of driving just like humans, i.e. through experience.

Fraud detection

Have you ever found mails asking if you have made any particular transaction using your credit card? Several banks send these kinds of emails to their customers to verify if they have purchased the same to avoid frauds being committed on your account. Artificial Intelligence is employed to check this sort of fraud.

Like humans, computers are also trained to identify fraudulent transactions based on the signs and indications a sample shows about a purchase.

Buying pattern prediction

Distinguished retailers, like Amazon do make a lot of money, as they anticipate the buyer’s needs beforehand. Their anticipatory shipping project sends you products even before you ask for them, saving you from the last-minute online shopping. If not online retailers, brick-and-mortar retailers also use the same concept to offer coupons; the kind of coupons distributed to the shoppers is decided by a predictive analytics algorithm.

Video games

Video games are one of the first consumers of AI, since the launch of the very first video games. However, over the years, the effectiveness and intricacies of AI has doubled, or even tripled, making video games more exciting, graphically and play wise. The characters have become more complex, and the nature of game-play now includes a number of objectives.

No matter, video games are framed on simple platforms, but as industry demand is burgeoning at an accelerating pace, a huge amount of money and effort are going into improving AI capabilities to make games more entertaining and downright exciting!

Fact: Artificial Intelligence is serving millions of people on earth today. Right from your smartphone to your bank account, car and even house, AI is everywhere. And it is indeed making a huge difference to all our lives.

To gain more knowledge on AI, enroll in Big Data Certification Gurgaon by DexLab Analytics. Their big data and data analytics training is of high quality and student-friendly. The prices of the course are also fairly convenient.

The blog has been sourced from – https://beebom.com/examples-of-artificial-intelligence

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

5 Best Data Science Resources to Ace the Game of Data

Wondering how a data scientist makes advances in his data career? Or how does he expand his skills in the future? Reading is the most common answer; nothing helps better than keeping a close eye on the industry news. Data science is evolving at a rapid speed; to be updated with the latest innovations and technology discoveries would be the best thing to stay ahead of the curve.

5 Best Data Science Resources to Ace the Game of Data

If you are a newbie in this field, make sure you are well-read about the current industry trends and articulate it well to the HR heads that you are someone who is always a step ahead to consume knowledge about data science and its related fields. This helps!

A wide number of data science blogs and articles are available over the internet, but with so many options, it’s easy to feel lost. For this and more, we have compiled a comprehensive list of 5 best data science blog recommendations that would help aspiring data scientists maneuver smoothly through this sphere.

Data Elixir

For a one stop destination for all things DATA, Data Elixir is the right choice. Crafted by ex-NASA data scientist Lon Riesberg, Data Elixir offers a list-wise view of the posts; easy categorization of content is anytime preferable and renders easy search options.

Data Science Weekly

The brain child of Hannah Brooks and Sebastian Gutierrez, Data Science Weekly is the ultimate hub for recent news, well-curated articles and promising jobs related to data science. You can either sign up for their newsletter or simply scroll through their archives dated back to 2013.

The Analytics Dispatch

The Analytics Dispatch is more like a newsletter content creating hub, wherein they send weekly emails about data science related stuff to its readers. Collected, analyzed and developed by a robust team at Mode Analytics, which also happens to be an Udacity partner, the newsletters focus on practical advices on data analysis and how data scientists should work.

Let’s Take Your Data Dreams to the Next Level

O’Reilly Media’s data science blog

To read some of the most amazing articles on AI and data science, make O’Reilly Media’s data science blog your best companion. The articles are curated, researched and written by influencers and data science pundits, who are technically sound and understands the advanced nuances of the field in-depth.

Cloudera

Being top notch big data software, Cloudera’s contribution to the world of data science is immense. Time to time, it publishes interesting articles, know-hows and guides on a plethora of open source big data software, like Hadoop, Flume, Apache, Kafka, Zookeeper and more.

Besides, DexLab Analytics, a pioneering analytics training institute headquartered in Gurgaon, India also publishes technical articles, amazing blogs, riveting case studies and interviews with analytics leaders on myriad data science topics, including Apache Spark, Retail Analytics and Risk Modeling. The content is crisp, easy to understand and offers crucial insights on a gamut of topics: it helps the aspiring readers to broaden their horizons.

The realms of data science are fascinating and intimidating as well; but with the right knowledge partner, carry suave data skill in your sleeves – Data Science Courses in Noida from DexLab Analytics are the best in town! Also, their Business Analytics Training Courses in Noida are worth checking for.

Some of the parts of the blog have been sourced from – http://dataconomy.com/2018/01/5-awesome-data-science-subscriptions-keep-informed/ and https://www.springboard.com/blog/data-science-blogs

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Facial Recognition Technology: Where Opportunities are Endless and Science is Terrific

Facial Recognition Technology: Where Opportunities are Endless and Science is Terrific

We are on the verge of the Fourth Industrial Revolution – where massive amounts of texts, tweets, photos, videos, status updates, GPS coordinates, reposts and clickstreams are being pumped out into the digital universe. This data is like the food for colossal artificial intelligence.

If we talk about resources, the ocean that AI-induced data has filled up is nothing if compared to California gold rush, Texas Oil boom or similar events. Huge amounts of data are clogging the digital space all over. Algorithms, based on AI are driving innovation in every field of work, right from products to services, and the more data you possess, the more accurate the algorithm is expected to be. As a result, collection and analysis of big data have become a prime focus of companies, big and small.

Introducing Deep Learning

But how does this mammoth AI works? How does it digest this amount of data? Of course through interconnected, high-end devices powered by embedding “eyes”, named as Deep Learning. These artificial neural networks work on the principle of machine learning algorithms and simulate the complex structure of human brains. Employing mammoth data pools and lakes, deep learning determines and interprets intricate patterns, just the way humans do. In fact, some of the artificial neural networks are so adept at incorporating these patterns that they can even mimic the manner in which humans recognize faces.

DeepFace:  A Stiff Competitor of Human Brain

In terms of facial data, Facebook is the largest reservoir of facial data, and back in 2015, it came out with a cutting edge version of “tag photos” feature, DeepFace – it features a nine layer neural network that resembles characteristics in individual photographs with 97.25% accuracy. This fabulous technology not only connects your name with your face, but it can easily pick you out of a crowd, and the figure says a human brain is only 0.28% more effective than DeepFace.

Of late, Facebook has acquired a new patent, “Techniques for emotion detection and content delivery,” – it helps in capturing user’s facial expressions through the camera in real time while they scroll across their feed, recording their emotions for various content. This new-age technology can not only customize your Facebook feed, but can also link numerous live in-store cameras for a better shopping experience, piling up data from Facebook and determining the shopper’s present mood and preference.

Facebook and Beyond

Though Facebook is dominating the waters of facial recognition, there are several other companies that are trying their luck into this domain. Ebookers, a sub-site of Expedia has launched a tool named SenseSational, which employs real time facial recognition software to monitor users’ faces, while they peruse over images and sounds that appeal to the senses.

On the other hand, Singapore Technologies Electronics is using facial recognition technology to identify the faces of commuters, as they walk across fare gates and charges their prepaid account respectively. No longer the commuters have to show their fare card while standing in queue; thus it eases the crowd buildup during rush business hours.

In conclusion, companies can anytime look up to deep learning from any angle. The giant of artificial intelligence is forever hungry, you can feed it with data whenever you like, and see it expand and flourish.

Seeking an excellent data analyst training institute in Gurgaon? Look no further; DexLab Analytics is here. With a wide set of comprehensive Data Science Courses in Delhi, this institute is here to satisfy every data need.

Let’s Take Your Data Dreams to the Next Level

The original article first appeared on – https://www.entrepreneur.com/article/311228

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

How Artificial Intelligence is Boosting the Design of Smarter Bionics

How Artificial Intelligence is Boosting the Design of Smarter Bionics

Artificial Intelligence and Machine Learning are a set of technologies that empower machines and computers to learn and evolve upon their own learning through constant reiteration and consistent data bank upgrades. The entire chain of mechanism stands on recursive experiments and human intervention.

Bionics

Advances in technology have greatly benefited the field of prosthetics in the last few years. Today’s prosthetic limbs are made using space-age materials that provide increased durability and function. In addition, many prosthetics make use of bionic technology. These types of prosthetics are called myoelectric prosthetics.

Let’s Take Your Data Dreams to the Next Level

Myoelectric prosthetics picks up the electrical action potential from the residual muscles in the amputated limb. Upon receiving the action potentials, the prosthetic amplifies the signal using a rechargeable battery. Detected signal can be used further into usable information to drive a control system. Artificial Intelligence helps to identify motion commands for the control of a prosthetic arm by evidence accumulation. It is able to accommodate inter-individual differences and requires little computing time in the pattern recognition. This allows more freedom and doesn’t require the person to perform frequent, strenuous muscle contractions. The inclusion of AI technology in prosthetics has helped thousands of amputees return to daily activities. While technologies that make bionic implants possible are still in infancy stage, many bionic items already exist.

The Bionic Woman

 Angel Giuffria is an amputee actress and Ottobock Healthcare’s Brand Champion who has been wearing electromechanical devices since she was four months old. Following are excerpts of an interview with her.

“I wear currently the bebionic 3 small-size hand which sounds like a car. But at this point, that’s where we’re getting with technology. It’s a multi-articulating device. That small-size hand is really amazing… this technology wasn’t available to them previously”

She further added, “..The new designs that look more tech are able to showcase the technology. I’ve really become attached to and I think a lot of other people have really clung onto as well because it just gives off the impression of showing people how capable we are in society now.”

 She also spoke about prosthetics like the Michelangelo Hand which is stronger, faster and has multiple hook options. Modern additions to prosthetics such as lights and cameras are added advantages. She describes her hand to be able to do multiple functions like change grip patterns and control wrist movements which enable her to hold small items like keys and credit cards.

angelgiuffriaottobokbebionichand

I-limb

Bertolt Meyer’s amazing bionic hand controlled via an iPhone app is another glimpse at the advances being made in prosthetics.

In 2009, Meyer, a social psychologist at the University of Zurich was fitted with an i-limb, a state-of-the-art bionic prosthesis developed by a Scottish company, Touch Bionics, which comes with an aluminum chassis and 24 different grip patterns. To select a new suite of gestures, Meyer simply taps an app on his iPhone. He describes his i-limb to be the first, where aesthetics match engineering.

Bertolt-Meyer-who-has-an--010

In the world of prosthetics, function is the key. Most amputees are constantly searching for the same level of functionality that they enjoyed before they lost their limb. With the introduction of artificial intelligence in prosthetic limbs, amputees are closer to their goals than ever before. Bionics having access to the relevant databases are capable of learning new things in a programmed manner which improves their performance.

For more such interesting blogs follow Dexlab Analytics. Also take a look at the Machine Learning courses being offered by Dexlab Analytics– a premier analytics training institute in Gurgaon.

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Call us to know more