Dexlab, Author at DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA - Page 31 of 80

Discover: Interesting Ways Netflix Relies on Big Data

Discover: Interesting Ways Netflix Relies on Big Data

Netflix boasts of over 100 million subscribers – a humongous wealth of data is stored and analyzed to enhance user experience. Big data makes Netflix the King of Stream; it keeps the customers engaged and content.

Big data recommends Netflix a list of programs that interests the viewers and this system actually influences 80% of content that is available on Netflix. Estimates say the cutting edge algorithms save $1 billion a year in value from customer retention – undoubtedly, a whopping figure for the entertainment industry.

Big data is used extensively all through Netflix application, BUT the Holy Grail is the prediction part: what the customers want to watch and enjoy matters the most. Moreover, big data is the fuel that powers up the recommendation engines that are created to serve the purpose.

netflix-and-devices-243

Healthy prediction of viewing habits

Efforts started way back in 2006, when Netflix was primarily into DVD-mailing business. It initiated the Netflix prize, rewarding $1 million to any group, which can devise the best algorithm to predict how a customer would rate a particular movie, based on previous ratings. Today, though the algorithms are constantly updated, but the principles still remain a key characteristic of a recommendation engine.

In the beginning, analysts were left with very little data about their customers, but as soon as streaming became more mainstream, new data points about their customers became easily available. What affects a particular movie had on a viewer could be assessed, as well as models were built to predict the ‘perfect storm’ situation for customers who were served with the movies they like.

Infographic-Netflix-knows-when-youre-Hooked

Identifying the next smashing series

Of late, Netflix has broadened its scope to include content creation, instead of limiting itself to being a distribution method for movie studios and other channels. This strategy is of course backed by meaningful data – which highlighted how its viewers are hungry for content directed by David Fincher and starring Kevin Spacey.

Every minute part of the production of the series is structured on data, including the colors used on the cover image of the series to draw in subscribers.

Netflix

For a quality experience

Netflix takes the quality aspect into great consideration. It closely monitors and analyzes the various factors that affect user behavior. Even, it develops models to explore how they perform. While, a large number of shows are hosted internally on its own distributed network of servers, they are also reflected around the world by ISPs and other hosts. Along with improving the user experience, efficient content streaming reduces costs for ISPs – shielding them from the cost of downloading data from Netflix server.

Big data and analytics have positioned themselves in the right order to dictate the operations across all Netflix platforms. They surely lead the pack of data by taking over distribution and production networks and re-modifying them through constant evolution and innovation of data.

Not only this, Netflix has reduced its promotional campaign budgets by targeting only the most relevant and interested people at the same time. All possible because of big data.

So, next time, when you peruse through your favorite shows in Netflix, do think and thank the power of big data. Because, big data is much more than what you think!

DexLab Analytics, a renowned big data training institute in Gurgaon is the best place to start a big data certification endeavor. The consultants are proficient in what they teach, the course curriculum is comprehensive and flexible course modules are suitable for everyone, irrespective of professionals or students.

The article has been sourced from:                                 

https://insidebigdata.com/2018/01/20/netflix-uses-big-data-drive-success

http://dataconomy.com/2018/03/infographic-how-netflix-uses-big-data-to-drive-success

https://www.linkedin.com/pulse/amazing-ways-netflix-uses-big-data-drive-success-bernard-marr

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

5 Steps to Reassess Your Big Data Business Strategy

5 Steps to Reassess Your Big Data Business Strategy

Company employees at all levels need to understand the role of big data in planning business strategies. Strategic planning has to be dynamic- constantly revised and aligned with the current market trends.

As the first quarter of 2018 is nearing to its end, here are 5 domains every business needs to pay attention to:-

  • Information retention for field-based technology:

In the current tech-driven business world, a lot of information needs to be collected from field-based technologies, like drones and sensors. Owing to internet bandwidth constraints, this data has to be stored locally instead of transmitting them for collection in a central location. Bandwidth constraints affect cloud-based storage systems too. Thus, companies need to restore traditional practices of distributed data storage, which involve collecting data locally and storing them on servers or disks.

2

  • Collaboration with cloud vendors:

Cloud hosting is popular among businesses, especially in small and midsized enterprises. Onsite data activities of companies include maintenance of infrastructure and networks that ensure internal IT access. With the shift towards cloud-based applications, businesses need to revise disaster recovery plans for all kinds of data. It should be ensured that vendors adhere to corporate governance standards, implement failover if needed, and SLAs (Service Level Agreements) match business needs. It is often seen that IT strategic plans lack strong objectives pertaining to vendor management and stipulated IT service levels.

  • How a company defines ROI:

In the constantly evolving business scenario, it is necessary to periodically re-evaluate the ROI (return on investments) for a technology that was set at the time of purchasing it. Chief information officers (CIOs) should regularly evaluate ROIs of technological investments and adjust business course accordingly. ROI evaluation should be a part of IT strategic planning and needs to be revisited at least once a year. An example of changing business value that calls for ROI re-assessment is the use of IoT technology in tracking foot traffic in physical retail stores. At a point of time, this technology helped managers display the most desirable products in best positions within a store. With the shift of customer base from physical to online venues, this tech has become redundant in terms of physical merchandising.

  • How business performance is assessed:

Like shifting ROIs, KPIs (key performance indicators) for companies that are based on inferences drawn from their data, are expected to change over time. Hence, monitoring these shifting KPIs should be a part of a company’s IT strategic plan. For example, customer engagements for a business might shift from social media promotions to increased mentions of product defects. Therefore, to improve customer satisfaction, businesses should consider reducing the number of remanufacture material authorizations and IoT alerts for sensors/devices in the production processes of these goods.

  • Adoption of AI and ML:

Artificial intelligence and machine learning play major roles in the current technological overhaul. Companies need to efficiently incorporate AI-powered and ML-based technologies in their business processes. Business leaders play key roles in identifying areas of a business where these techs could add value; and then testing their effectiveness through small-scale preliminary projects. This should be an important goal in the R&D strategic planning of business houses.

Let’s Take Your Data Dreams to the Next Level

As mentioned in Harvard Business review, ‘’the problem is that, in many cases, big data is not used well. Companies are better at collecting data-about their customers, about their products, about competitors-than analyzing the data and designing strategy around it.’’

‘’Used well’’ means not only designing superior strategies but also evolving these strategies with changing market trends.

From IT to marketing- professionals in every sector are going for big data training courses to enhance their competence. Enroll for the big data Hadoop certification course in Gurgaon at DexLab Analytics– a premier data analyst training institute in Delhi.

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Predictive Analytics: What It is and Why It’s Important for Businesses

Predictive Analytics: What It is and Why It’s Important for Businesses

Did you know that 2.5 quintillion bytes of data are generated on a daily basis? Big data is a valuable asset for companies provided that this data can be utilized to improve their performance. Companies employ predictive analytics to uncover hidden patterns in data and develop quick and efficient strategies that will steer their businesses forward.

IMB Watson is a popular predictive analytics processor that employs natural language processing technology to analyze human speech. IBM Watson can analyze a vast amount of data, often in a fraction of a second, to answer human-framed questions.

What is predictive analytics?

Predictive analytics use a combination of statistical modeling and machine learning techniques to determine the likelihood of future events based on historical data, which can come from structured, unstructured and semi-structured sources. A good example of the use of predictive analytics is the preparation of a credit report of a customer by a financial institution.

large

Credit Score:

Financial lenders use predictive analytics to scrutinize relevant data of an individual who has applied for a loan, including data pertaining to the individual’s current assets and debts, his/her employment and history of paying off loans. All this data is analyzed and boiled down to a single value known as credit score. This value represents the lending risk and helps the lender determine a customer’s creditworthiness. The higher the credit score, the more confident is the lender that the customer will fulfill his/her credit obligation.

predictive_analytics_and_cross-selling-01_1

Predictive analytics help lenders make quick and efficient decisions, such as accepting or rejecting a customer and increasing or decreasing their loan value. Credit risk modeling training has become extremely important across many sectors, including banking, insurance and retail.

Importance of predictive analytics:

Thanks to the plethora or new age analytics tools and software, predictive analytics make it easier for organizations to plan the future and gain competitive advantage.

Below are some ways in which predictive analytics are used:

  • To predict the probability of certain diseases affecting a specific group of people so that the necessary preventive healthcare measures can be taken.
  • To predict the probability of certain machine parts failing so that preventive maintenance can be administered.
  • To predict the probability of an interruption in a business’s supply chain.
  • To predict customer behavior.
  • To predict safety risks on railroads.
  • To predict traffic flows and the infrastructure requirements of a city.

3-3infographic-pa-12345

How businesses use predictive analytics:

It is imperative for every company to include predictive analytics in their technology portfolio. The major vendors of predictive analytics include SAP, IBM, Oracle, SAS, Information Builders, etc. Their on-premise and cloud-based versions give companies a lot of options to choose their predictive analytics tools from.

On-premise predictive analytics systems are used by companies requiring high level of analytical power and predictive intelligence. These include companies in the drug and pharmaceutical sector; companies working on life science fields like genomics; and research institutes and universities.

Cloud-based versions provide predictive analytics solutions to companies on a per usage or subscription basis. These are highly beneficial for small and medium sized companies where predictive analytics aren’t the core component, but they are still critical for their success and need to be fitted in a stipulated IT budget. Companies can use the ‘’try and buy’’ facility provided by cloud-vendors to test if a particular software is working for them before finalizing a contract.

Companies that lack prior experience in predictive analytics can opt for SaaS (Software as a Service), which are cloud-based solutions with expertise in a specific sector, for example healthcare.

Role of Business Leaders:

Business leaders must be skilled in using the insights provided by predictive analytics to develop strategies that drive their businesses forward. This includes two things; firstly coming up with well-construed questions and secondly identifying the right kind of data to analyze. These will determine whether predictive analytics is working for a company or not.

Companies in all industry verticals are employing predictive analytics to formulate future strategies. As mentioned in a report- ‘’the global market for predictive analytics is projected to grow to $3.6 billion USD by 2020.”

To more about predictive analytics follow Dexlab Analytics– a premier analytics training institute in Gurgaon. Do take a look at their credit risk modeling courses.

 

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.

To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Evolving Logistics Scenario: The Tech-driven Future of Logistics Industry

Customer expectations are growing by the day; they are demanding faster and more flexible deliveries at minimum delivery costs. Businesses are being pressurized to customize their manufacturing processes as per customer demands. This is a hard slog for the logistics industry, which has to keep delivering better services but for lower prices.

The logistics industry can only achieve this through ‘digital fitness’. It has to make intelligent use of the global wave of digitization, including data analytics, automation and ‘Physical Internet’. The Physical Internet is an open global logistics system that is transforming the way physical objects are handled, moved, stored and supplied. It aims towards the replacement of current logistical models and making global logistics more efficient and sustainable. The Physical Internet promises better standardization in logistics operations, including shipment sizes, labeling and systems.

The central theme in logistics sector is collaborative working, which enables market leaders to retain dominance.

Now, let us take a look at a few tech-driven domains that will shape the future of logistics.


The future of Logistics Lies in IoT

Internet of Things has been the most innovative technology of the present era. It has the potential to revolutionize the logistics sector. The key benefits of IoT with regard to logistics are:

  • Real-time alerts and notifications
  • Automate processes that gather data from various machines
  • Automate vital operations like inventory management and asset tracking: With the help of IoT, companies can improve tasks like tracking orders, determining what items need to be stocked up and how certain products are performing.
  • Able to function without any human interventions.
  • Logistic companies can provide safer deliveries
  • Enable the regulation of temperature and other environmental factors.

IoT will be advantageous for the entire logistics sector, including fleet and warehouse management, and shipment and delivery of products. IoT can help companies dealing with cargo shipments by improving visibility in the delivery and tracking of cargo.

Warehouse Automation

Warehouse automation is set for a major overhaul. Online shopping is thriving and logistics, especially warehouse operations, need to be more refined and speedy. Warehouse operations of many e-commerce giants are undergoing a robotics makeover. According to reports, the market for logistics robotics, which had generated revenues worth 1.9 billion USD in 2016, is likely to generate sky-high revenues worth 22.4 billion USD this year.

The advancements in robotics include programming robots to pick and pack goods, load and unload cargo and at times deliver goods too. Employing robots speed up the processes of data collection, maintaining records and managing inventories.  Most importantly, robots leave no room for human errors in the processes.


Blockchain Technology in Logistics

The growth of crypto-currencies like Bitcoin has popularized blockchain technology. Blockchain being a type of distributed ledger technology provides secure, traceable and transparent transactions. Blockchain technology employed by logistics firms will improve customer visibility into shipments and help prevent data breaches.

In the present times, logistics is considered the backbone of a stable economy. Thus, for India to emerge as a superpower, the logistics market needs to be developed and integrated with state-of-the-art technologies. Conducive policies and a healthy partnership between private and public sector is crucial to steer India into an era of competent and cost-effective business operations.

In times to come, automation will transform every industry. Don’t be left behind. Get an edge by enrolling for the data science and machine learning certification course at the premier data analyst training institute in DelhiDexlab Analytics.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How American Express Uses Data Analytics to Promote a Data-Driven Culture

data analytics training institute

Since 2010, American Express, with an encompassing database crossing over 100 million credit cards accounting for more than $ 1 trillion in charge volume annually, is harnessing the power of big data. Undeniably, it resulted in incredible improvements in speed and performance.

In the last four decades, the entire financial services industry has undergone a massive change, notably in the spheres of:

Electronic payments – Online payments, comprising credit and debit cards have dramatically increased over cash, globally.

E-commerce – An excessive reliance on smartphones and internet have boosted E-commerce capabilities manifold times.

With an increasing interaction between company and customers, the latter’s online and offline identity is being collaborated for an encompassing 360-degree view. This eventually drives innovation in product designing and marketing.

Formulating a Data-Driven Culture

Data analytics is like the bull’s eye of effective marketing, and servicing and risk management. Data curation and management is now a prerequisite for competitive excellence.

Since its inception, American Express flaunts transformation: the company has transformed itself from being a trivial freight forwarding business to a top notch player in payments and customized service industry. Over the years, the working mechanism of the firm has changed dramatically, and today, it is #1 small business card issuer in the whole of the US.

No matter, while the company strives to evolve, its core values remain somewhat same. Keeping their customers above anything else and behave like a good citizen are two core values of American Express that are beyond alterations. To become a successful data-driven organization, they believe in investing on technology, analytics, along with human talent, emphasizing on a proper synthesis between technology and human cognition to trigger robust growth and future success.

How American Express Stays Relevant and Fresh?

Risk 2020 – American Express envisions how an economy or marketplace might look like after a few years, and in the process, assesses the risks to combat to address the weaker issues in the economy. A comprehensive approach, including cloud, deep learning, mobile computing and AI is the solution.

Cornerstone – This is an encompassing, global big data ecosystem. The data is stored and shared with global potentialities across trusted sources. In any organization, data is the centre of attraction, and the consultants at American Express recognize the essence of innovation lies at company’s DNA and not somewhere on the top.

The data-driven culture in American Express is simple, natural and nuanced. A huge data base is created, from acquisition to customer management, which eventually needs to be shared with third parties and partners to derive insightful conclusions for better customer experience and risk assessment. “At American Express, we take our responsibility to serve customers and the public seriously, always ensuring that solutions are best-in-class and valuable to our customers,” says Ash Gupta, president, Global Credit Risk & Information Management, American Express.

“American Express’ closed-loop data allows us to analyze a large volume of real spending that can help marketers across a range of industries connect with customers and provide unique value,” he further adds.

Data Science Machine Learning Certification

To know more about data-driven customer experience, visit DexLab Analytics, a premier data analyst training institute in Delhi. They offer a plethora of data analyst training courses for interested candidates.

 

The blog has been sourced from:

https://www.forbes.com/sites/ciocentral/2018/03/15/how-american-express-excels-as-a-data-driven-culture/#5c5ed1a81635

https://digit.hbs.org/submission/american-express-using-data-analytics-to-redefine-traditional-banking/

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Conversational AI and Chatbots are Revolutionizing Indian banking Industry

Thanks to the advancements in AI and ML, bank work can now be done with the click of a phone button! Innovations in the field of customer services form an important part of the technology overhaul. The banking sector is making hefty investments on AI technology to simplify user experience and enhance overall performance of financial institutes.

Let’s take a look at how conversational AI and chatbots are revolutionizing the Indian banking industry.

  • Keya by Kotak Mahindra Bank

Keya is the first AI-powered chatbot in Indian banking sector. It is incorporated in Kotak’s phone-banking helpline to improve its long-established interactive voice response (IVR) system.

‘’Voice commands form a significant share of search online. In addition, the nature of the call is changing with customers using voice as an escalation channel. Keya is an intelligent voicebot developed keeping in mind the customers’ changing preference for voice over text. It is built on a technology that understands a customer’s query and steers the conversation to provide a quick and relevant response”, says Puneet Kapoor, Senior Executive Vice President, Kotak Mahindra Bank.

2

  • Bank of Baroda chatbot

Akhil Handa, Head of Fintech Initiatives, Bank of Baroda said that their chatbot will manage product-related queries. He believes that the services of the chatbot will result in better customer satisfaction, speedy responses and cost minimization.

  • Citi Union Bank’s Lakshmi Bot

Lakshmi, India’s first humanoid banker is a responsive robot powered by AI. It can converse with customers on more than 125 topics, including balance, interest rates and transactional history.

  • IBM Watson by SBI

Digital platforms of SBI, like SBI inTouch, are utilizing AI-powered bots, such as IBM Watson, to enhance customer experience. SBI stated that modern times will witness the coexistence of men and machines in banks.

  • AI-driven digital initiatives by YES Bank in partnership with Payjo

Payjo is a top AI Banking platform based out of Silicon Valley in California. YES Bank has partnered with Payjo to launch YES Pay Bot, its first Bot using AI, which improves already popular wallet services. The YES Pay wallet service is trusted by more than half-a-million customers.

  • YES TAG chatbot

YES TAG chatbot has been launched by YES Bank and enables transactions through 5 messaging apps. Customers can carry out a wide range of activities, such as check balance, FD details, status of cheque, transfer money, etc. It is currently used in Android and will soon be available on Apple App Store.

  • Digibank

Asia’s largest bank, DBS Bank, has developed Digibank, which is India’s first mobile bank that is ‘chatbot staffed’. It provides real-time solution to banking related issues. This chatbot employs a trained AI platform, called KAI, which is a product of New York startup- Kasisto.

  • Axis Bank launches intelligent chatbot in association with Active.ai

Axis Bank facilitates smart banking with the launch of a chatbot that employs conversational interface to offer interactive mobile banking solutions. This intelligent chatbot was developed in association with Singapore based AI company- Active AI.

  • HDFC Bank launches OnChat in partnership with Niki.ai

To enable smooth ecommerce and banking transactions, HDFC in partnership with Niki.ai has launched a conversational chatbot, called OnChat. It is available on Facebook messenger even to people who aren’t HDFC customers. Users can recharge phone, book cabs and pay utility bills through this chatbot.

  • EVA by HDFC Bank

EVA is exclusively for the customers of HDFC Bank. It is an electronic virtual assistant developed in partnership with Senseforth, an AI startup based in Bengaluru.

  • mPower by YES Bank

mPower is a chatbot for loan products that has been developed by YES Bank in association with Gupshup-a leading bot company. It assists customers on a variety of loan related topics like personal loans, car loans and loan against securities.

In the future, there will be three kinds of bots- speech-based bot, textbots and video chatbots. Conversational bots work in harmony with human employees to enrich customer experience.

Thus, AI-powered technology is the way forward. To be industry-ready in this AI-era, enroll for the Machine Learning course in Gurgaon at Dexlab Analytics. It is a premier Analytics training institute in Delhi.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Business Intelligence Software in the Key for an Organization to Gain Competitive Advantage

Business Intelligence, or BI, is crucial for organizations as strategic planning is heavily dependent on BI. BI tools are multi-purpose and used for indicating progress towards business goals, quantitatively analyzing data, distribution of data and developing customer insights.

Advanced computer technologies are applied in Business Intelligence to discover relevant business data and then analyze it. It not only spots current trends in data, but is also able to develop historical views and future predictions. This helps decision-makers to comprehend business information properly and develop strategies that will steer their organization forward.

BI tools transform raw business information into valuable data that increase revenue for organizations. The global business economy is completely data driven. Companies without BI software will be jeopardizing their success. It is time to shed the belief that BI software is superfluous. Rather, it is a necessity.

Here is a list of 10 important things that BI solutions can help your organization achieve. After reading these you will be convinced that BI is vital in taking your business forward.

  1. Provide speedy and competent information for your business

Nowadays, there isn’t much time to ponder over data sheets and then come to a conclusion. Decisions have to be taken on the spot. Valuable information doesn’t include business data alone, but also what the data implies for your business. BI gives you a competitive lead as it provides valuable information with the push of a button.

  1. Provide KPIs that boost the performance of your business.

Business Intelligence software provides KPIs (Key Performance Indicators), which are metrics aligned with your business strategies. Thus, businesses can make decisions based on solid facts instead of intuition. This makes business proceedings more efficient.

  1. Employees have data-power

BI solutions help employees to make informed decisions backed by relevant data. Access to information across all levels ensures company-wide integration of data. This helps employees nurture their skills. A competitive workforce will help a company gain global recognition.

  1. Determine the factors that generate revenue for your business

Business intelligence is able to determine where and how potential customers consume data, how to convert them to paying customers, and chalk out an appropriate plan that will help increase revenue for your business.

  1. Avoid blockages in markets

There are many BI applications that can be incorporated with accounting software. Business intelligence provides information about the real health of an organization, which cannot be determined from a profit and loss sheet. BI includes predictive features that help avoid blockages in markets and determine the right time for important decisions, like hiring new employees. Easy-to understand dashboards enable decision-makers to stay informed.

  1. Create an efficient business model

As explained by Jeremy Levi, Director of Marketing, MarsWellness.com, ‘’ Why is BI more important than ever? In one word: oversaturation. The internet and the continued growth of e-commerce have saturated every market…For business owners, this means making smart decisions and trying to know where to put your marketing dollars and where to invest in infrastructure. Business intelligence lets you do that, and without it, you’re simply fumbling around for the light switch in the dark.”

  1. Improved customer insights

In the absence of BI tools, one can spend hours trying to make sense out of previous reports without coming to a satisfactory conclusion. It is crucial for businesses to meet customer demands. BI tools help map patterns in customer behavior so businesses can prioritize loyal customers and improve customer satisfaction.

  1. Helps save money

BI tools help spot areas in your business where costs can be minimized. For example, there is unnecessary spending occurring in the supply chain. BI can identify whether it is inefficient acquisition or maintenance that is translating to increased costs. Thus, it enables businesses to take the necessary actions to cut costs.

  1. Improve efficiency of workers

Business intelligence solutions can monitor the output of members and functioning of teams. These help improve efficiency of the workers and streamline the business processes.

  1. Protects businesses from cyber threats

Cyber crimes like data breaches and malware attacks are very common. Cyber security has become the need of the hour. Businesses should invest in BI solutions equipped with security tools that help protect their valuable data from hackers and other cyber attacks.

Businesses will progress rapidly through the use of smart BI solutions. Organizations small or big, can use BI tools in a variety of areas, starting from budgets to building relationship with customers.

If you want to empower your business through BI then enroll yourself for the Tableau BI certification course at DexLab Analytics, Delhi. DexLab is a premium institute providing business analysis training in Delhi.

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

A Comprehensive Article on the Trends, Dynamics and Developments of Risk Analytics Market

Risk analytics makes organizations aware of the potential risks in their businesses. It helps companies make risk-aware decisions and improves their overall business performance. Risk analytics tools help investors get a better return on their capital and minimize the money required to be spent on regulatory compliances. Risk analytics tools aid in the central clearing of over-the-counter (OTC) derivatives.

Classification of Risk Analytics Market

Risk analytics market is divided based on:

  • Component type: Component segment of risk analytics market is further classified based on:
    • Type of solution: Risk analytics software group for regulatory compliance, market risk management, credit risk management, etc. are included in this group.
    • Services: Software services associated with risk analytics software like systems integration and risk evaluation are included in this group.
  • Size of enterprise: Risk analytics market based on size of enterprise is further categorized as:
    • Large organizations
    • Small and medium organizations
  • End-use verticals: Risk analytics market based on end-use vertical is further classified as:
    • BFSI- Banking, financial services and insurance
    • Manufacturing and retail
    • Telecom and IT
    • Government
    • Energy and utility, etc.

Risk analytics is expected to draw large revenues from BFSI sector. Recent times have seen developing countries perform better than the developed economies. This causes currency fluctuations and entails considerable risk. In the face of this current economic climate, BSFI sector is demanding improved risk analytics solution. State-of-art risk analytics tools are an absolute necessity for BSFI sector as they have to spot potential frauds using statistical models.

Main Drivers of Risk Analytics Market

  1. Market risk augmentation owing to:
  • Lack of economic stability
  • Market competitiveness
  1. Stringent regulations and policies are causing a surge in the demand of risk analytics software. Following are some policies responsible for the increased demand:
  • Basel I and II
  • Comprehensive Capital Analysis and Review
  • Dodd-Frank Wall Street Reform
  • Consumer Protection Act (CCAR/DFAST)

Small and medium sized enterprises lack cognizance of risk analytics tools. Moreover, a hefty amount of money is required for the installation of risk analytics tools. These issues are likely to hinder the growth of risk analytics market.

A developed IT sector and authoritative presence of blue chip companies are the key factors boosting the development of risk analytics market. North America is expected to hold majority of the market share in risk analytics market. Significant growth in risk analytics market is likely to occur in the Asia Pacific region. The growing competition in the market and fluctuations in currency will fuel the demand of risk analytic tools.

Major Vendors in Risk Analytics Market

  • IBM Corporation
  • SAP SE
  • Tata Consultancy Services Ltd.
  • SAS Institute
  • Oracle Corporation, etc.

With the rise in global risk, companies have to adopt new approaches to analyze risk. Big data and artificial intelligence are paving the way for the development of revolutionary strategies. CEOs are seeking the valuable input of insurers to curb the threat of cybercrime. Risk teams are turning into strategic advisors.

To know more about risk analytics follow Dexlab Analytics- a premium analytics training institute in Delhi. To gain proficiency in credit management tool, enroll for their credit risk modeling courses.

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

AI is enhancing careers: How can you gain advantage in this AI-era?

Artificial intelligence has a significant impact on our lives. Several AI powered automation tools are already in use such as customer service applications and voice-powered assistants, like Apple’s Siri and Amazon’s Alexa. Adoption of AI will benefit the business by improving the quality and consistency of work. Based on a discussion between Forbes Agency council members, we have listed the ways in which artificial intelligence can help workers improve their career.

  1. More valuable insights

AI will bring positive changes in the job of PR professionals. AI technology will take over manual jobs such as news monitoring, researching, reporting and making media lists. AI based predictive analytics will help PR professionals make better market predictions. They will reduce manual workload and help in strategic and creative thinking.

  1. Replace mundane tasks

AI, automation and machine learning will replace daily low-quality cognitive tasks such as scheduling calendar invites, daily food ordering, determining whether to answer/review/delete emails based on facts. They will eventually aid in quality tasks such as identifying connections, analyzing correlation and drawing inferences.

  1. Act as concierge

Popularity of Alexa, Watson, and Einstein suggest that consumers will expect tech to provide concierge services in the future. As AI techs evolve post their purchase, it will anticipate an individual’s daily tasks and provide highly personal recommendations.

  1. Make marketing smarter

AI will enable companies develop stronger relationships with their customers. IBM’s Watson and other cognitive technology will help analyze unstructured text, audio, images and video. AI’s ability to perceive and process personality, tone and feelings will help deliver better personal recommendations. It will help companies carry out conversations using chatbots.

  1. Automate customer support

The availability of chatbots round the clock will save a lot of time. They answer customer questions, give recommendations and guide customers to the next step. They will reduce the workload of customer support systems. Bots can draw insights on the needs, engagements and emotions of customers.

  1. Unleash the full potential of your mind

Workers will be spared from carrying out mundane tasks. They will have the time to focus on productive tasks, which require problem-solving skills and creativity.

  1. On-the–fly video editing

AI will eventually edit videos in real time.  Real- time user engagement will perform multiple instantaneous tasks such as changing sound effects on the fly.

  1. Create jobs and assimilate workflow

AI will interfere with regular workflow but in return it will create new jobs. It will help integrate the workforce. Humans will be instrumental in helping the AI work in harmony with the employees.

  1. Improve future strategies

Humans will always be a part of the PR industry, as they are crucial in maintaining a healthy customer relationship. The data that is collected through AI will enable making more informed decisions for the future. AI will help companies stay abreast of information related to their competitors through better media monitoring.

  1. Shrink 40 hours of analysis to 4 minutes

Manual analysis is very time consuming. The future of marketing efficiency lies in automation tools that will drastically reduce the time taken to analyze data and form strategies.

  1. Productivity even during commute

AI has made automated driving a reality. Driving in autopilot mode greatly reduces driver fatigue and can affect productivity during commute, especially to and from work.

  1. Improve brand engagement

AI can help devise customized experiences in real time. It interprets customer interactions and instantly creates customized content.

  1. Make routine processes easier

Entrepreneurs describe AI as the ultimate efficiency driver. The day to day tasks can be entrusted to digital hands, which enable human hands to be more productive. AI driven technology is benefitting manufacturing processes as well as advertising platforms.

  1. Give edge in competition

Businesses using AI will have a competitive edge over their clients. This is because AI implementation replaces manual processes of sorting complex data, drawing key insights and chalking out an action plan. AI improves decision-making, ROI, operational competence and cost savings.

AI related employment opportunities are on the rise. Compared to the demand, there is a lack in the number of professionals proficient in AI. It is predicted that by 2020, 20 percent of companies will need their workers to monitor and direct neural networks. About 2 million jobs in the cyber security sector are about to go vacant in the coming years.

So it is absolutely imperative to future-proof your career for the imminent AI era. Broaden your skill set and increase your proficiency by taking professional training in Machine Learning, Business Analytics and Data Science. Get an edge in your career by joining the Data science and machine learning certification course offered by Dexlab Analytics- a premier institute offering multiple courses on data science.

Interested in a career in Data Analyst?

To learn more about Machine Learning Using Python and Spark – click here.
To learn more about Data Analyst with Advanced excel course – click here.
To learn more about Data Analyst with SAS Course – click here.
To learn more about Data Analyst with R Course – click here.
To learn more about Big Data Course – click here.

Call us to know more