Dexlab, Author at DexLab Analytics | Big Data Hadoop SAS R Analytics Predictive Modeling & Excel VBA - Page 21 of 80

Forecasting Earthquake Aftershocks with Artificial Intelligence

Forecasting Earthquake Aftershocks with Artificial Intelligence

Recently, a study where a huge number of earthquakes were analyzed using machine-learning models, fared better at indicating the regions affected by aftershocks than traditional methods of analyzing the same.

This study puts forward new ways of analyzing how ground stress, which is caused by a massive seismic activity like earthquake, trigger aftershocks that follow. Researchers believe that this advancement in aftershock detection can open up fresh avenues for assessing seismic risks.

Phoebe DeVries, a seismologist at Harvard, believes this new research to be a demonstration of the immense opportunities that machine learning has in this field.

Contrary to the general idea that aftershocks aren’t as damaging as the main earthquake, they can actually be more devastating. As an example consider the 7.1 magnitude earthquake that shook Christchurch area in New Zealand in September 2010. It didn’t take lives but the 6.3 magnitude aftershock that occurred over 5 months later caused massive damage and took 185 lives.

2

Standard Method

Currently, the problem lies not in predicting the magnitude of aftershocks; rather seismologists find it difficult to forecast the spots where the aftershocks will hit. The traditional method used for aftershock forecasting involves calculating changes in stress of nearby rocks that’s produced by the main earthquake and using these calculations to find out the likelihood of aftershocks striking a particular area. This stress-failure process is good for defining after-shock patterns, but sometimes it fails to generate correct results.

There’s a lot of data available on previous earthquakes. DeVries and her group has used this data and applied it in machine learning models to create better predictions.

Neural Networking

Data related to over 131,000 main and after tremors were analyzed by scientists. It included some of the most destructive earthquakes, like the 9.1 magnitude quake that shook Japan in 2011. Employing this massive data set, neural networks were trained and these modeled a grid of cells that surrounded every main tremor location at a distance of 5 kilometers. Neural networks were given the signal that an earthquake had occurred and also fed in data related to the changes in stress at the centre of each grid cell. Following this, the neural networks were asked to give the probability of each cell generating aftershocks.

After testing this method for 30,000 main shocks and aftershock events, it was concluded that the neural networks forecasted the after tremor locations more accurately as compared to the stress-failure method. The networks treated each cell as an individual problem instead of calculating the overall effect of stress on the rocks. Furthermore, the ML models also implied some physical changes that occur in the ground due to the main shock and other important parameters that researchers don’t normally consider in seismic studies. One of them is the stress changes that occur in certain materials, like metals.

To conclude, it can be said that this new study is a motivating step forward in the study of seismic activities. AI and ML are breaking new grounds in every field of study. Understandably, Artificial Intelligence courses are all the rage among students wanting to leap forward in their careers. If data, numbers and forecasts interest you then this artificial intelligence certification in Delhi NCR should definitely be considered.

 

Reference: https://www.nature.com/articles/d41586-018-06091-z

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

7 Leading Sectors in India That Need an AI & Analytics Makeover

7 Leading Sectors in India That Need an AI & Analytics Makeover

Advancements in the field of data analytics and artificial intelligence are fuelling innovation in every nation around the world. India too is showing keen interest in AI. This year, the government has doubled the amount invested in the innovation program Digital India which drives advances in machine learning, AI and 3-D printing.

The signs of increased activity in AI research and development are showing in different areas. Here are the topmost sectors of India that are in dire need of AI and data science revolution:

FINANCE

According to reports by PricewaterhouseCoopers, financial bodies and payment regulators deal with billions of dollars in transactions through ATMs, credit cards, e-commerce transactions, etc. When human expertise is combined with advanced analytical methods and machine learning algorithms, fraudulent transactions can be flagged the moment they occur. This leaves less room for human errors. Considering the recent discoveries about major frauds in reputed banks in India, this approach seems more like a necessity.

Image source: American Banker

 

AGRICULTURE

Although 40% of the Indian population works in the agricultural sector, revenues from this sector make up only 16% of the total GDP. The agricultural industry needs advanced data analytics techniques for the prediction of annual, quarterly or monthly yields; analyzing weather reports are observing the best time to sow; estimating the market price of different products so that the most profitable crop can be cultivated, etc. AI powered sensors can measure the temperature and moisture level of soil. With the help of such data farmers can identify the best time to plant and harvest crops and make efficient use of fertilizers.

Image source: Inventiva

HEALTHCARE

According to the Indian constitution, each and every citizen is supposed to get free healthcare. And government hospitals do provide that to people below poverty line. Nonetheless, 81% of the doctors work for private hospitals and nearly 60% hospitals in India are private (According to Wikipedia). The root cause for this is that government hospitals are overpopulated. People who can afford healthcare services from a private hospital prefer to be treated there. Data science can play a pivotal role in managing the growing demand for healthcare services by strengthening the current infrastructure. It can help by predicting how many days a patient is likely to be admitted and find out the proper allotment of beds. AI fine tunes medical predictions and helps selecting a proper line of treatment.

Image source: wxpress

CRIME PREDICTION

Considering the number of security threats and extremist attacks India has faced in the past, there’s urgent need to develop efficient methods that can neutralize such threats and maintain proper law and order. AI and ML can step in to ease the burden of security personnel. A welcome development is the collaboration between Israeli company Cortica and Best Group. Massive amounts of data from CCTV cameras across the nation are being analyzed to anticipate crime and take action before it happens. Streaming data is scrutinized for behavioral anomalies, which are considered as warning signs for a person who commits a violent crime. The aim of the Indian authorities is improving safely in roads, stations, bus stops and other public places.

Image source: Digital Trends

From the paragraphs above it is evident that AI and data analytics has immense scope to improve these major sectors in India. While you look forward to these developments also follow DexLab Analytics, which is a leading data analyst training institute in Delhi. For data analyst certification, get in touch with DexLab’s industry experts.

Reference:

www.brookings.edu/blog/techtank/2018/05/17/artificial-intelligence-and-data-analytics-in-india

www.analyticsvidhya.com/blog/2018/08/top-7-sectors-where-data-science-can-transform-india-with-free-datasets

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Machine Learning is Driving Out DDoS, The Latest Hazard in Cyber Security

How Machine Learning is Driving Out DDoS, The Latest Hazard in Cyber Security

It is common knowledge that the computer world is under constant threat of security breaches. Furthermore, cyber attacks are becoming more dangerous by the day. Over three trillion dollars are wasted every year owing to cyber crimes. And this huge wastage of money is likely to double by 2021. In a time where the number of internet users is increasing exponentially, it seems surreal to expect that threats can be completely eradicated.

Among a plethora of threats, the most infamous one is DDoS, which stands for distributed denial of service attack. In this malicious form of attack, normal traffic for the targeted server, network or service is disrupted by flooding it and its neighboring infrastructure with tremendous internet traffic. This new evil in cyber security has wreaked havoc with business processes.

The tech ecosystem is becoming increasingly dominated by machine learning. ML techniques provide a new approach to eradicate DDoS attacks. In this blog, we discuss a newly researched ML technique that helps restrain DDoS attacks.

SIP and VoIP

A team of researchers from University of Aegean, Greece, headed by Z Tsiatsikas, has published a study about tackling DDoS with machine learning in SIP-based VoIP systems. The popularity of VoIP systems in hardware ecosystems is the primary reason for choosing it for this study. In this age of internet, VoIP is the common choice for voice as well as multimedia communications.

Session Initiation Protocol (SIP) is the preference for initiating VoIP sessions. The basic structure of SIP/VoIP architecture has been described below:

User Agent (UA): This represents the endpoints of SIP, which are active units of the session. For example, in the case of voice communication, the caller and receiver represent endpoints for the session.

SIP Proxy Server: This entity acts both as client and server during the session. The tasks of the server are:

  • Maintaining send and receive requests
  • Transferring information between users

Registrar: Authentication processes and requests to register for UA are managed by this entity.

The VoIP provider keeps a record of the SIP communication. This is an important step as it gives out information to service providers regarding billing and accounting based activities of users. In addition to this essential data, it may also give out data about intrusion or dubious activities happening in a network. Hence, it is very important to monitor this area. If neglected, it may turn into a hotbed for DDoS attacks.

Combining ML Methods in VoIP

The researchers have employed these five standard ML algorithms in experiments:

  • Sequential minimal optimization
  • Neural networks
  • Naïve Bayes
  • Random Forest
  • Decision trees

In the experiment, communications are taken care of through these algorithms. The network is made anonymous using HMAC (keyed-hash method authentication code) and classification features are created. These algorithms are tested using 15 different DDoS attack situations. This is done using a ‘test bed’ of DDoS simulations. The design, as done by researchers, is shown below:

Image source: Analytics India

Following are some of the parameters of the experiment:

  • 3 to 4 types of Virtual Machines (VMs) have been used for SIP proxy, legitimate users, and for generating attack traffic based on the scenario.
  • Particularly for SIP proxy, popular VoIP server Kamailo (kam, 2014) has been employed.
  • sipp v.3.21 and sipsak2 tools have been employed to simulate patterns for legitimate and DoS attack traffic.
  • For simulation of DDoS attack, SIPpDD tool has also been used
  • Weka tool has been used for machine learning analysis.

Performance

Compared to non-ML detection, these algorithms perform well. Speaking from an intrusion detection viewpoint, Random Forest and decision trees work best. With the rise in attack traffic, there’s drop in the rate of intrusion detection, which signifies the presence of DDoS.

To conclude, it can be said that machine learning surpass traditional methods of detecting attacks. This latest development in cyber security is another example of the rapid progress that machine learning is bringing into every field.

Interested in joining machine learning courses in Delhi? Wait not. Contact DexLab Analytics Right Now and get yourself enrolled for the best machine learning training in Delhi.

 

This article has been sourced from: www.analyticsindiamag.com/machine-learning-chasing-out-ddos-cyber-security

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

DexLab Analytics’ AUGUST OFFER: Everything You Need to Know Of

DexLab Analytics’ AUGUST OFFER: Everything You Need to Know Of

We are happy to announce that we’re rolling some good news your way – DexLab Analytics is all set to launch exhaustive modules in Deep Learning with AI starting with Artificial Neural Networks using Python, MS Excel, Dashboards, VBA Macros, Tableau BI, Visualization and Python Spark for Big Data from September 1, 2018. The course modules are on in-demand skills and they are taking the world quite by a storm.

DexLab Analytics’ AUGUST OFFER

Big data, data science and artificial intelligence are buzz words these days. More and more people are coming forward and showing keen interest on these nuanced notions that solves real-world problems. This is why we didn’t want to fall behind. We understand the importance of data in this digitized world, and accordingly have chalked out our intensive industry-ready courses.

Deep Learning and AI starting with Artificial Neural Networks using Python course module is a 30-hour long training program that gives exposure to MLP, CNN, RNN, LSTM, Theano, TensorFlow and Keras. It includes more than 8 projects out of which a couple of focuses on development of models in to Image and Text recognition. MS Excel, Dashboards and VBA Macros certification is curated by the expert consultants after combining industry expertise with academician’s knowledge. The course duration is in total of 24 hours and is conducted by seasoned professionals with more than 8 years of industry experience specific to this budding field of science.

DexLab Analytics’ August Offer is On Machine Learning & AI

DexLab Analytics’ August Offer is On Machine Learning & AI

Next, we have30-hour hands-on classroom training on Tableau BI & Visualization certification, which teaches young minds how graphical representation of data unlocks company future trends and take quicker decisions. Tableau is one of the fastest evolving BI and data visualization tool. With that in mind, we offer a learning path to all you students by framing a structured approach coupled with easy learning methodology and course curriculum.  

DexLab Analytics Offers MS Excel, Dashboards and VBA Macros Certification!

DexLab Analytics Offers MS Excel, Dashboards and VBA Macros Certification!

Lastly, our Big Data with PySpark certification is another gem in the learner’s cap: the Spark Python API (PySpark) exposes users to the Spark Programming model with Python. Apache Spark is an open source and is touted as a significant big data framework for pivoting your tasks in a cluster. The main objective of this course is to teach budding programmers how to write python code using map-reduce programming model. The 40-hours hands-on classroom training will talk about Big Data, overview of Hadoop, Python, Apache Spark, Kafka, PySpark and Machine Learning.

Now, first 12 students who happen to register for each course on or before 30th August, 2018 will get alluring discount offer on the total course fee. Interesting, isn’t it? So, what are you waiting for? Go, grab all the details about AUGUST OFFER: to register, call us at +91 9315 725 902 / +91 124 450 2444 or hit the link below – www.dexlabanalytics.com/contact

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

LinkedIn Suggests How to Find Machine Learning Experts across Diverse Career Pathways

LinkedIn Suggests How to Find Machine Learning Experts across Diverse Career Pathways

Machine learning skill is fast picking up pace amongst more and more businesses. Each day, a large number of employees are being sucked into the booming field of big data analytics. But, recruiting them can be a tad bit challenging, on the part of employers. In this regard, LinkedIn recently shared some valuable data that defines the standard career path of a machine learning professional, offering insights as to how enterprises can themselves build and nurture such talent.

In the process of conducting such an intensive analysis, LinkedIn scrutinized various profiles across the globe having at least one machine learning skill listed in their profiles. The analysis of profiles spanned from April 2017 to March 2018.

The result of the analysis is interesting; it highlighted the skills the professionals share with each other and at what point of their career they need to adapt to these skills. It also sheds light on what kind of skills are developed just before machine learning – and they are data mining, R and Python, respectively.

LinkedIn has a valuable suggestion for the recruiters – it says companies can seek job candidates that have these abovementioned skills, only to develop machine learning skill later.

2

For state of art Machine Learning course in India, drop by DexLab Analytics.

Some of the other skills worthy of professionals’ interest are Java and C++ – these programming languages are gaining importance day by day.

The data given below even illustrates which industry absorbs the majority of machine learning talent. Unsurprisingly, one third of professionals powered by machine learning skill falls under higher education and research category, more than a quarter of ML professionals are from software and internet industry and the rest are scattered amongst other industry types.

Following the insights, LinkedIn suggests that enterprises should look beyond their respective industries to seek right ML candidates. According to last year’s data, 22% of people possessing ML skill changed their jobs and amongst them, 72% changed industries.

Moreover, the data helps recruiter identify the right candidate by checking out the combination of his skills as a whole and the skills a ML professional should possess. For example, ML professionals belonging from the finance and banking sector are more likely to be specialized in business analytics, Tableau and SAS, while ML professionals hailing from software industry should have a vast knowledge on a broad spectrum of programming language skills.

Future of Machine Learning

Machine learning is another flourishing branch of AI. While the early AI programs were mostly rule-based and human-dependent, the latest ones possess the striking ability to teach and formulate their own operational rules.

2017 was smashing for witnessing growth of scope and capabilities of machine learning, while 2018 harbors potential for widespread business adoption, says a research from Deloitte.

As parting thoughts, AI is nothing but tools adopted to tackle high-end business problems. Designing a proper application of machine learning includes asking the right questions to the right people to get hold of right solutions.

Interested in Machine Learning Using Python? DexLab Analytics is the go-to training institute for all data hungry souls.

 
References:

zdnet.com/article/looking-for-machine-learning-experts-linkedin-data-shows-how-to-find-them

techrepublic.com/article/machine-learning-the-smart-persons-guide
 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

5 Best Tools Transforming Predictive Analytics in 2018

5 Best Tools Transforming Predictive Analytics in 2018

Gone are the days of sloppy decision-making techniques. Competitive businesses are embracing predictive analytics and associated tools.

Predictive analytics is a real game changer that allows companies to implement marketing strategies and serve customers with renewed efficiency. Customers in their natural interactions and networking with a company leave behind huge amounts of data. Predictive models extract valuable information from all this data, thereby helping enhance the performance of products and services, promoting better customer retention strategies, and improving core business competencies.

‘’The capacity for predictive analytics to learn from experience is what renders this technology effective, differentiating it from other business intelligence tools and analytics techniques’’, says the predictive analytics experts at Quantzig.

From thoroughly examining data, to figuring out correlations and patterns in data, predictive analytics tools effectively manage the entire business process. In this blog, we talk about some of the latest predictive analytics tools that are all the rage in 2018! So let’s dive in!

SAP Business Objects:

  • A powerful Business Intelligence platform that provides techniques to make swift and informed business decisions.
  • Offers a novel perspective on forming scalable solutions
  • SAP Business Object helps develop insights that encourage real time actions.
  • Enables users to visualize data in a self-serving manner

Image Source: Technosap

IBM Predictive Analytics:

  • Offers predictive analytics solutions that are simple to use and meet the requirements of different types of businesses.
  • Two important softwares, namely IBM SPSS Modeler and IBM SPSS Analytics, allow all users to implement predictive analytics and improve their businesses, irrespective of their skill levels.
  • The platform helps prevent frauds and maximizes profits.
  • It transforms extraneous data into predictive insights that steer key business decisions.
  • It is built with abilities to perform geospatial analysis and text analytics.
  • Runs on open source platforms with optional coding
  • Secure and private

Image Source: SlideShare

QlikView:

  • Flexible and easy-to-use business intelligence platform
  • Created by QlikTech
  • Allows enterprises to pull out relevant information from a given data set, which in turn helps design guided analytics applications.
  • Platform adopts a user-driven approach towards building charts and creating dashboards
  • BARC’ BI Survey 10 recognizes the ‘Agile BI’ ability of QlikView

Halo:

  • Ideal pick for an uninterrupted supply chain management system that aids in business forecasting
  • A smart platform with a dependable data repository, where cases can be run over and over again in order to perfectly match predictions with results.
  • Accessible through all kinds of browsers and available for cloud or hosted.
  • Self-serving nature of supply chain management allow organizations to increase customer satisfaction.

Image Source: Software Advice

Dataiku-DSS:

  • Dataiku is capable of transforming raw data into predictions.
  • Allows users to employ analytics appropriate algorithms
  • Allows users to leverage available libraries and apply custom codes in R and Python
  • Permits integration of external libraries by means of code API’s
  • Equipped with 80+ in-built functions that help investigate and clean raw forms of data
  • The best feature is a visual data profile at each step of analysis.

Image source: The Dataiku Blog

Want to learn SAS Predictive Modeling? Contact DexLab Analytics. The industry-experts at DexLab offer excellent SAS predictive modeling training. It encompasses theoretical understanding of core concepts and hands-on experience.

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

How Python Introduces New Audiences to the Exciting World of Computer Programming

How Python Introduces New Audiences to the Exciting World of Computer Programming

What was the motivation behind the birth of Python? The language has been searched by American Google users more often than Kim Kardashian in the last one year! And the rate of queries related to Python has trebled since 2010.

Dutch computer scientist, Guido van Rossum, fed up with the shortcomings in commonly used programming languages, developed Python as his Christmas project in 1989. He wanted a language that was simple to read, allowed users to create their own modules for special-purpose coding and then made this package available to others. And lastly he wanted a ‘’short, unique and slightly mysterious’’ name. He named the package after the British comedy group, Monty Python. And Cheese Shop was the chosen name for the package repository.

Nearly three decades after this ground-breaking Christmas invention, the popularity of Python is still growing. According to stats from Stack Overflow, a programming forum, approximately 40% of developers use it and 25% intend to do so. But the programming language isn’t admired by the community of developers alone; it is well-liked the public in general. According to Codecademy, a website that has taught different programming languages to over 45 million novices, Python has the highest demand. Python aficionados, known as Pythonistas, have contributed over 145,000 packages to the Cheese Shop and these cover diverse realms, such as astronomy and game development.

Image source: Economist

Decoding Python’s Fame

Python isn’t perfect. There are other languages that have higher processing efficiency and give users better control over the computer’s processor. However, Python possesses some killer features, which make it a great general purpose language. It has easy-to-learn syntax that simplifies coding. Python is a versatile platform that has a variety of applications.

 

  • The Central Intelligence Agency uses it for hacking
  • Pixar employs it for work related to films
  • Google uses it for crawling web pages
  • Spotify recommends songs with the help of Python

 

Python is also widely used for tasks that are grouped under ‘’non-technical’’. Following are some examples:

 

  • Marketers build statistical models with the help of Python to judge the effectiveness of campaigns.
  • Lecturers use it to find out if the grading system is accurate or not
  • Journalists use codes written in Python for grazing the web for data

 

Professionals who need to trawl through spreadsheets find Python highly valuable for their work. EFinancialCareers, a website dealing with jobs, has reported a fourfold increase between 2015 and 2018 in job listings that mention Python. Citigroup, the reputed American bank, organizes crash courses in Python to train newly hired analysts.

Some of the most appealing packages within the Cheese shop harness the power of AI. Mr. Van Rossum declares that Python is the preferred language for AI researchers. They use it for creating neural networks and identifying patterns from huge data sets. However, the high demand for learning Python comes with certain risks. Novices who know how to use different tools but don’t know their intricacies well are prone to make faulty conclusions without proper supervision.

One solution for this problem is to educate students from an early age. Generally, teaching programming languages is limited to STEM students in American universities. A radical proposal is to offer computer science classes to primary school children. Anticipating a future filled with automated jobs, 90% American parents have expressed desire that their children receive computer programming classes in school.

Presently, 67% of 10-12 year olds have accounts in Code.org. In university level, Python has been ranked the most popular programming language for 2014. While nobody can predict how much longer Python will keep reigning, one thing is for sure, Mr. Rossum’s Christmas invention is truly smart and purposeful.

To the dismay of Pythonistas, on 12th July 2018, he stepped down from the position of supervising the community. The reason being his discomfort with the rising fame!

Well, we hope Python’s glory continues for years to come! To read more blogs on the latest developments in the world of technology, follow DexLab Analytics. If you’re interested in mastering machine learning using Python, then you must check our machine learning courses in Delhi.

 

Reference: economist.com/science-and-technology/2018/07/19/python-has-brought-computer-programming-to-a-vast-new-audience

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Explaining the Job Nitty Gritty of a Data Scientist

Explaining the Job Nitty Gritty of a Data Scientist

What do data scientists do? Since the inception of the term data science, we’ve heard about how it transforms all major sectors, including retail, agriculture, health, legal, telecommunications and automobile industry, but little do we know what exactly the job entails.

Following a recent DataCamp podcast DataFramed, we found out a set of key things about data scientists, and they are as follows:

2

Not only tech, but other industries are being explored

A prominent data scientist from Convoy shared insights about how their company is leveraging data science to revolutionize North American trucking industry. Then again, data science is also deemed to make a significant impact on cancer research. So, from this we can understand that data science is not only limited within the walls of technology but has started to seep through different industry verticals.

via GIPHY

It’s beyond AI and self-driving cars

Sure, deep learning and machine learning are powerful applications, but not all data scientists are lost waddling around these top notch techniques. Instead, most of the regular data scientists earn their daily bread and butter through data accumulation and cleaning, creating reports and dashboards, data viz, statistical inference, communicating and convincing decision-makers about key outcomes.

Skill evolution

“Which skill is more important for a data scientist: the ability to use the most sophisticated deep learning models, or the ability to make good PowerPoint slides?” – The latter is crucial, so is communicating results.

However, these skills are likely to change very quickly. In a very short span of time. Rapid development across diverse open-source ecosystem is evident; as a result any kind of skill or expertise is unlikely to last long.

For quick Data Science Certification, drop by DexLab Analytics.

Specialization is the key

It’s better to break down data science into three main components: Business Intelligence, which talks about pulling out data and presenting it to the right people in the form of reports, dashboards and mails; Decision Science, which is all about gathering company data and analyzing it for decision-making; and Machine Learning, which deals with the ways in which we can use data science models and put them into production.

Choosing a distinct career path is an emerging trend and it’s gaining a lot of popularity for all the right reasons.

Ethics is a driving factor

No wonder, this profession is full of uncertainty; at a time, when most of our daily interactions are influenced by algorithms designed by data scientists, what role do you think ethics play? On this context, this is what Omuji Miller, the senior machine learning data scientist at GitHub has to say:

‘We need to have that ethical understanding, we need to have that training, and we need to have something akin to a Hippocratic oath. And we need to actually have proper licenses so that if you actually do something unethical, perhaps you have some kind of penalty, or disbarment, or some kind of recourse, something to say this is not what we want to do as an industry, and then figure out ways to remediate people who go off the rails and do things because people just aren’t trained and they don’t know.’

Soon, we’re approaching a state where the need to maintain ethical standards would come from within data science itself and advocates, legislators and other stakeholders. Hope this consensus comes soon.

The data science revolution is quite the order of the day, and it’s going to stay for a while. So, if you want to ace up your data skills, we’ve superior Data Science Courses in Delhi. Just, visit our website and pore over our course offerings.

 

The blog has been sourced from — hbr.org/2018/08/what-data-scientists-really-do-according-to-35-data-scientists

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Citizen Data Scientists: Who Are They & What Makes Them Special?

Citizen Data Scientists: Who Are They & What Makes Them Special?

Companies across the globe are focusing their attention on data science to unlock the potentials of their data. But, what remains crucial is finding well trained data scientists for building such advanced systems.

Today, a lot many organizations are seeking citizen data scientists – though the notion isn’t something new, the practice is fairly picking up pace amongst the industries. Say thanks to a number of factors, including perpetual improvement in the quality of tools and difficulty in finding properly skilled data scientists!

Gartner, a top notch analyst firm has been promoting this virgin concept for the past few years. In 2014, the firm predicted that the total number of citizen data scientists would expand 5X faster than normal data scientists through 2017. Although we are not sure if the number forecasted panned out right but what we know is that the proliferating growth of citizen data scientists exceeded our expectations.

Recently, Gartner analyst Carlie Idoine explained a citizen data scientist is one who “creates or generates models that use advanced diagnostic analytics or predictive and prescriptive capabilities, but whose primary job function is outside the field of statistics and analytics.” They are also termed as “power users”, who’ve the ability to perform cutting edge analytical tasks that require added expertise. “They do not replace the experts, as they do not have the specific, advanced data science expertise to do so. But they certainly bring their OWN expertise and unique skills to the process,” she added.

Of late, citizen data scientists have become critical assets to an organization. They help businesses discover key big data insights and in the process are being asked to derive answers from data that’s not available from regular relational database. Obviously, data can’t be queried through SQL, either. As a result, citizen data scientists are found leveraging machine learning models that end up generating predictions from a large number of data types. No wonder, SQL always sounds effective, but Python statistical libraries and Jupyter notebooks helps you further.

 A majority of industries leverages SQL; it has been data’s lingua franca for years. The sheer knowledge of how to write a SQL query to unravel a quiver of answers out of relational databases still remains a crucial element of company’s data management system as a whole lot of business data of companies are stored in their relational databases. Nevertheless, advanced machine learning tools are widely gaining importance and acceptance.

A wide array of job titles regarding citizen data scientists exists in the real world, and some of them are mutation of business analyst job profile. Depending on an organization’s requirements, the need for experienced analysts and data scientists varies.

Looking for a good analytics training institute in Delhi? Visit DexLab Analytics.

DataRobot, a pioneering proprietary data science and machine learning automation platform developer is recently found helping citizen data scientists through the power of automation. “There’s a lot happening behind the scenes that folks don’t realize necessarily is happening,” Jen Underwood, a BI veteran and the recently hired DataRobot’s director of product marketing said. “When I was doing data science, I would run one algorithm at a time. ‘Ok let’s wait until it ends, see how it does, and try another, one at a time.’ [With DataRobot] a lot of the steps I was taking are now automated, in addition to running the algorithms concurrently and ranking them.”

To everyone’s knowledge, Big Data Analytics is progressing, capabilities that were once restricted within certain domains of professionals are now being accessible by a wider pool of interested parties. So, if you are interested in this new blooming field of opportunities, do take a look at our business analyst training courses in Gurgaon. They would surely help you in charting down a successful analyst career.

 

The blog has been sourced fromdatanami.com/2018/08/13/empowering-citizen-data-science

 

Interested in a career in Data Analyst?

To learn more about Data Analyst with Advanced excel course – Enrol Now.
To learn more about Data Analyst with R Course – Enrol Now.
To learn more about Big Data Course – Enrol Now.

To learn more about Machine Learning Using Python and Spark – Enrol Now.
To learn more about Data Analyst with SAS Course – Enrol Now.
To learn more about Data Analyst with Apache Spark Course – Enrol Now.
To learn more about Data Analyst with Market Risk Analytics and Modelling Course – Enrol Now.

Call us to know more